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THE COMPLEXITY OF MAXIMAL COFINITARY GROUPS

BART KASTERMANS

Abstract. A cofinitary group is a subgroup of the infinite symmetric group
in which each element of the subgroup has at most finitely many fixed points.
A maximal cofinitary group is a cofinitary group that is maximal with respect
to inclusion. We investigate the possible complexities of maximal cofinitary
groups, in particular we show that (1) under the axiom of constructibility there
exists a coanalytic maximal cofinitary group, and (2) there does not exist an
eventually bounded maximal cofinitary group. We also suggest some further
directions for investigation.

1. Introduction

In this paper we study maximal cofinitary groups; these are almost disjoint fam-
ilies maximal under the additional requirement that they form a group. An almost
disjoint family is a family of countable sets (here functions, which are identified
with their graph as a subset of N × N) such that any two members of the family
have finite intersection. A maximal almost disjoint family (mad family) is an al-
most disjoint family not properly contained in another almost disjoint family. Here
we do not look at just almost disjoint families, we require the families to form a
group as well.

Much work has already been done on the structure and cardinal invariants related
to maximal cofinitary groups (see e.g. Adeleke [A81], Truss [T86], Brendle, Spinas,
and Zhang [BSZ00], Hrusak, Steprāns, and Zhang [HSZ01], etc.). There is also
some previous work on the complexity of these groups for example Gao, Zhang
[GZxx]. For a general survey of cofinitary groups see Cameron [C96].

Definition 1. (i) Sym(N) is the group of bijections N → N.
(ii) f ∈ Sym(N) is cofinitary iff it has only finitely many fixed points, or is the

identity.
(iii) G ≤ Sym(N) is cofinitary iff all of its members are cofinitary.
(iv) G ≤ Sym(N) is a maximal cofinitary group iff it is a cofinitary group and

not properly contained in another cofinitary group.

To see that a cofinitary group is an almost disjoint family, let f, g be members of
the group, then fixed points n of g−1f correspond to numbers n such that f(n) =
g(n). The existence of maximal cofinitary groups follows from Zorn’s Lemma: if
〈Gα | α < β〉 is an ⊆-increasing chain of cofinitary groups, then

⋃
α<β Gα is a
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cofinitary group that is an upper bound for the chain. Zorn’s lemma then ensures
the existence of a maximal cofinitary group.

Under additional assumptions there are more ways to construct a maximal cofini-
tary group. Using the following definitions and lemmas one can, for instance,
construct a maximal cofinitary group from the continuum hypothesis or Martin’s
axiom.

Definition 2. (i) If G ≤ Sym(N), then WG = G ∗ F (x), the free product of
G with the free group on one generator.

(ii) If p, q : N ⇀ N are finite injective functions, with p ⊆ q we call q a good
extension of p w.r.t. w(x) ∈ WG iff for each n ∈ N such that w(q)(n) = n,
for which w(p)(n) is not defined, there exist u, z ∈WG, l ∈ N such that
• w = u−1zu with no cancellation,
• z(p)(l) = l, and
• u(q)(n) = l.

(iii) If w ∈ WG, then w = g0x
k0g1x

k1 · · ·xklgl+1. The length of w, lh(w),
is defined to be l + 1 + Σl

i=0ki. If n ≤ lh(w), we define w � n to be
the subword of w of length n starting from the right (if w = gx2h, then
w � 1 = h, w � 2 = xh, etc).

(iv) For p : N ⇀ N a partial function, w(x) ∈ WG, and n ∈ N, we define the
evaluation path for n in w(p) to be the sequence 〈li ∈ N | i ≤ j〉, with
l0 = n, li+1 = (w � i)(p)(n) and

j :=

{
lh(w), if w(p)(n) is defined;
max{i | (w � i)(p)(n) is defined}, otherwise

The use of these definitions comes from the following lemmas that can be found
in, for instance, Zhang [Z00] and Zhang [Z03].

Lemma 3. If G is a countable cofinitary group, p : N ⇀ N a finite injective
function, f ∈ Sym(N) \G such that 〈G, f〉 is cofinitary, and w ∈WG then

• (Domain Extension Lemma) for each n ∈ N \ dom(p), for all but finitely
many k ∈ N, the extension p ∪ {(n, k)} is a good extension of p w.r.t. w,

• (Range Extension Lemma) for each k ∈ N \ ran(p) for all but finitely many
n ∈ N, the extension p ∪ {(n, k)} is a good extension of p w.r.t. w,

• (Hitting f Lemma) for all but finitely many n ∈ N the extension p ∪
{(n, f(n))} is a good extension of p w.r.t. w.

It is often the case that families of reals where the axiom of choice (Zorn’s Lemma
is equivalent to this) is used in their existence proof do not have simple descriptions.
For example Mathias [M77] showed that there is no analytic mad family of subsets
of N (note that these families can be constructed from the continuum hypothesis
or Martin’s axiom in much the same way as maximal cofinitary groups can be
constructed). Miller [M89] showed that under the axiom of constructibility there
exists a coanalytic mad family of subsets of N.

Miller’s method is flexible enough to work for a variety of almost disjoint families.
The construction of mad families usually proceeds by adding one new member at
a time. We recursively construct the family to be A = {fα | α < ω1}. Then under
the axiom of constructibility it is sufficient to prove a coding lemma of the following
form.
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Lemma 4 (Coding Lemma — Generic Form). If A is a countable almost disjoint
family and z ∈ 2N, we can construct a new member f to adjoin to the family such
that

(i) z is recursive in f , and
(ii) if we iterate the construction ω1 many times we construct a maximal almost

disjoint family.

In fact the construction has to be such that z is uniformly recursive in f ; the
function computing z from f should not depend on A or on other parameters in
the construction.

The method in outline is then as follows. There is a collection of levels Lβα ,
α < ω1 and βα < ω1 that are equal to their own Skolem hull under enough of their
definable Skolem functions. These levels also have the property that a relation
E ⊆ N × N such that (Lβα

,∈) ∼= (N, E) is in Lβα+ω. We can then use the coding
lemma to encode E into the next element fα of the almost disjoint family we
construct; this element will also be in Lβα+ω. Since from E we can obtain a relation
isomorphic to Lβα+ω and Lβα+ω contains all information needed to compute fα, the
function fα contains “a certificate” for its own membership in the family. Decoding
this certificate takes a Π1

1 formula.
In Miller [M89] there are more details, but in Kastermans [K06] and in Kaster-

mans, Steprāns, and Zhang [KSZxx] full details are given.
Using this method Su Gao and Yi Zhang were able to prove the following in

[GZxx].

Theorem 5. The axiom of constructibility implies that there exists a maximal
cofinitary group with a coanalytic generating set.

They prove a nice version of the generic type coding lemma, and the generating
set is constructed in the right way for the general method to apply.

The difficulty in showing that the whole group can be coanalytic is that when
you add a new generator you also add countably many other new elements. In the
construction we will use the method of good extensions, which implies that the new
generator will be free over all that came before. Then for all w ∈ WG \ G we will
have w(g) 6∈ G. And all these elements need to encode E for the method to work
(for simplicity we will work with z ∈ 2N, where z is n 7→ χE(f(n)) for f : N → N×N
a recursive bijection).

The following proposition shows that in the case of cofinitary groups we can-
not get z uniformly recursive in f in the coding lemma, when our construction is
computable. This does not quite prove that uniform computability is not possible
as the construction does not need to be computable, and moreover, it only has to
work over a fixed group (the one constructed in previous steps of the construction).

Proposition 6. There do not exist recursive functionals Ψ(X,Z, n) and Φ(X,n)
such that for all countable cofinitary groups G, and all z ∈ 2N the function g ∈
Sym(N) defined by g(n) = Ψ(G, z, n) satisfies that 〈G, g〉 is cofinitary, and for all
w ∈WG we have that z(n) = Φ(w(g), n).

Proof. Let G be given to us as a countable sequence 〈gi | i ∈ N〉, and assume that
Ψ and Φ as in the statement do exist.

Pick a countable cofinitary group G, and a z ∈ 2N with z(0) = 0. Define g from
G and z using Ψ as in the statement of the proposition. Let u = use(Φ, g, 0), the
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use of g by the functional Φ when calculating Φ(g, 0) (that is u is the least number
such that all queries Φ makes of g are in g � u). Then for all h ∈ Sym(N), if
h � u = g � u then Φ(h, 0) = 0.

Let z′ ∈ 2N be such that z′(0) = 1. Define g′ from G and z′ using Ψ as in the
statement of the lemma. Let U = use(Ψ, G, z′, g′ � u), the maximal use of G and z
by Ψ in calculating g′(0), . . . , g′(u− 1).

So in determining g′(0), . . . , g′(u−1) no use is made of any group element in the
enumeration 〈gi | i ∈ N〉 with index i > U .

Now pick a new cofinitary group Ḡ and enumeration of it 〈ḡi | i ∈ N〉 such that
ḡi = gi for i ≤ U and there are elements gl and gk such that gl(g′ � u)gk = g � u.

Define g′′ from Ḡ and z′ using Ψ as in the statement of the proposition. Then
g′′ � u = g′ � u. However if we choose w(x) = glxgk, then w(g′′) = g � u,
which means that Φ(w(g′′), 0) = 0 contradicting the fact that Φ computes z′ from
w(g′′). �

In the next section we show how to overcome this difficulty and prove that the
axiom of constructibility implies that there exists a coanalytic maximal cofinitary
group.

This does not completely answer the question of what the lowest possible com-
plexity of maximal cofinitary groups is as there is no result yet corresponding to
Mathias’ result (which shows that there are no analytic maximal almost disjoint
families of subsets of N). Blass has observed that if there is an analytic maximal
cofinitary group, there is a Borel maximal cofinitary group. From Mathias result
the conjecture is that there are no Borel maximal cofinitary groups. The currently
known results are far from showing this though.

It is immediate that maximal cofinitary groups cannot be open (any basic open
set contains two elements with infinitely many agreements). It is, however, still
open if there exists a closed maximal cofinitary group. We show in the last section
that maximal cofinitary groups cannot be contained in a Kσ (a countable union of
compact sets).

One of the problems in approaching this question is that the methods for con-
structing maximal cofinitary groups are not very flexible. The method using good
extensions always gives rise to free groups; and it is certainly imaginable that
the least possible complexity of freely generated maximal cofinitary groups is not
the same as the least possible complexity of maximal cofinitary groups in general.
Therefore we ask what the possible isomorphism types of maximal cofinitary groups
are. Using results from Kastermans [Kxxa], Blass has observed that they cannot
be Abelian. We don’t know of many other restrictions though. So the question is
what the possible isomorphism types of maximal cofinitary groups are.

2. A Coanalytic Maximal Cofinitary Group

In this subsection we will prove the following theorem.

Theorem 7. The axiom of constructibility implies that there exists a coanalytic
maximal cofinitary group.

We will recursively construct the maximal cofinitary group. To make the coding
work out though we have to start with a specific countable group.
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Let G0 be the countable cofinitary group generated by h defined as follows:

h(n) =


n− 2, if n is even and not zero;
n+ 2, if n is odd;
1, if n = 0.

Then there is a formula only involving natural number quantifiers φG0(x) that
defines this group as a subgroup of Sym(N).

The coding method we use has two cases and a parameter. But with these it
will be uniform; there exists a recursive functional Φ(X,m, γ, n) such that if z is
encoded in f we have that there exist m ∈ N and γ ∈ {0, 1} such that for all n ∈ N
we have z(n) = Φ(f,m, γ, n).

The encoding will be as follows; z is encoded in f with parameter (m, 0) iff

(kn, z(n)) = fn(m), for some kn ∈ N;

z is encoded in f with parameter (m, 1) iff

(kn, z(n)) = f(hf)n(m), for some kn ∈ N.
This encoding will be done in the following way. At some point in the construc-

tion, we have already constructed a finite approximation p to the new generator g.
We then start encoding into a new word w ∈WG. Let w = g0x

k0g1 · · ·xklgl+1 with
gi ∈ G (i ≤ l + 1) and ki ∈ Z \ {0}. Pick m such that gl+1(m) 6∈ dom(p) ∪ ran(p),
and let γ = 0 if w does not have a proper conjugate subword, γ = 1 otherwise.
We extend p by taking a good extension (see Definition 2.(ii)) with respect to
certain words, extending the evaluation path of w(p) for m. We do this until
a = (w � lh(w) − 2)(m) is defined. Then (assuming k0 > 0, the other case is
analogous) we choose a b such that p ∪ {(a, b)} is a good extension with respect to
certain words, such that w(p ∪ {(a, b)})(m) ∈ {(k, z(0)) | k ∈ N}, and such that we
can encode z(1) into the next location.

This last requirement is where the two different types of encoding play a role. If
w has no proper conjugate subword, then since G is cofinitary there is only finitely
much restriction from the requirement that gl+1(g0(b)) 6∈ dom(p)∪ran(p)∪{b}. If w
does have a proper conjugate subword, then we will always have that gl+1(g0(b)) =
b. This is why in that case we “twist” by h. The next location we then want to
encode in is h(g0(b)) and, again since G is cofinitary, we will have only finitely much
restriction from requiring gl+1(h(g0(b))) 6∈ dom(p) ∪ ran(p) ∪ {b}.

With this we have enough information to state and prove the coding lemma for
cofinitary groups.

Lemma 8. Let G be a countable cofinitary group containing G0, F ≤ Sym(N) \G
a countable family of permutations such that for all f ∈ F the group 〈G, f〉 is
cofinitary, and z ∈ 2N. Then there exists g such that 〈G, g〉 is cofinitary, for all
f ∈ F the set f ∩ g is infinite, and z is recursive in w(g) for all w ∈WG \G.

Proof. Since WG \G is countable, enumerate it by 〈wn | n ∈ N〉, and enumerate F
by 〈fn | n ∈ N〉.

Start by setting g := ∅, A := ∅ and 〈cn | n ∈ N〉 with all cn := ∅. g will be the
permutation we construct, so at any time it will be a finite injective function. A is
a set of numbers; it is the set of numbers in domain and range that are being used
in coding. We have to avoid this set in all steps other than coding steps. It will
always be finite and any number will stay in it for only finitely many stages of the
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construction. 〈cn | n ∈ N〉 is a sequence of which at any time an initial segment
will contain triples that hold information on how far we are in the coding, where
the coding currently is being done, and how we are coding.

At step s ∈ N in the construction we do the following:

• Extend Domain: Set a := min{N\(dom(g)∪A)}. By the Domain Extension
Lemma (see Lemma 3) , for all but finitely many b the extension g∪{(a, b)}
is a good extension of g with respect to all words wi, i ≤ s. Choose b to be
the least such number such that b 6∈ A and set g = g ∪ {(a, b)}.

• Extend Range: Set b := min{N \ (ran(g) ∪ A)}. By the Range Extension
Lemma (see Lemma 3), for all but finitely many a the extension g∪{(a, b)}
is a good extension of g with respect to all words wi, i ≤ s. Choose a to be
the least such number such that b 6∈ A and set g = g ∪ {(b, a)}.

Note: these two sub-steps ensure that g will be a permutation of N; no number
stays in A long enough to cause problems.

• Hit f : For each j ≤ s in turn do the following:
By the Hitting f Lemma (see Lemma 3) , for all but finitely many a the

extension g ∪ {(a, fj(a))} is a good extension of g with respect to all words
wi, i ≤ s. Choose a to be the least such number such that a, fj(a) 6∈ A and
set g = g ∪ {(a, fj(a))}.

Note: this ensures for all f ∈ F that f ∩ g is infinite.

• Coding: For each j < s in turn do the following:
cj is a triple (m, l, γ), where m denotes where the coding is taking place,

l denotes the next location of z to encode, and γ determines how to encode.
Let n be the largest number such that a := (wj � n)(g)(m) is defined.

Then wj = w′gjx
kxδ(wj � n), where w′ ∈ WG, gj ∈ G, and k ≥ 0 if δ = 1

and k ≤ 0 if δ = −1.
Case δ = 1:
By the Domain Extension Lemma, for all but finitely many b the ex-

tension g ∪ {(a, b)} is a good extension of g with respect to all words wi,
i ≤ s.

Subcase k > 0:
Choose b to be the least number such that b 6∈ A ∪ dom(p), set g =

g ∪ {(a, b)} and replace a in A by b (so a is no longer a member of A but b
now is).

Subcase k = 0:
SubSubcase w′ = w′′xδ′ (δ′ ∈ {−1, 1}):
Choose b to be the least number such that b 6∈ A and gj(b) 6∈ A∪dom(g)∪

ran(g) (in fact depending on δ′ we only care about avoiding one of dom(g)
or ran(g)). Set g = g ∪ {(a, b)} and replace a in A by gj(b).

SubSubcase w′ = ∅: (This is where the actual coding happens.)
Choose b to be the least number such that b 6∈ A, gj(b) 6∈ A, g(b) ∈

{(c, z(l)) | c ∈ N} and if γ = 0 w0(gi(b)) 6∈ A ∪ dom(g) ∪ ran(g) ∪ {b} or if
γ = 1 then w0(h(gi(b))) 6∈ A ∪ dom(p) ∪ ran(g) ∪ {b}.

The requirements b 6∈ A, gj(b) 6∈ A, and w0(gj(b)) 6∈ A∪dom(p)∪ ran(p)
or w0(h(gj(b))) 6∈ A ∪ dom(p) ∪ ran(p) exclude finitely many possibilities
for b. Since G is cofinitary, w0(gj(b)) 6= b or w0(h(gj(b))) 6= b also excludes
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finitely many possibilities. So we can choose b ∈ g−1
j [{(c, z(l)) | c ∈ N}]

satisfying the last condition on b.
Then set g = g ∪ {(a, b)}, replace a in A by w0(gi(b)) (if γ = 0) or

w0(h(gi(b))) (if γ = 1) and set cj := (gj(b), l + 1, 0) (if γ = 0) or cj :=
(h(gj(b)), l + 1, 1) (if γ = 1). (γ is set in Extending Coding below and
explained on page 5.)

Case δ = −1: The method and (sub)subcases are analogous to the case
δ = 1 but using the range extension lemma.

• Extending Coding: If ws has a proper conjugate subword, set γ = 1; other-
wise set γ = 0. Then let a be the least number such that if ws = w′gs, then
gs(a) 6∈ dom(g) ∪ ran(g) ∪ A. Add gs(a) to A and set cs = (a, 0, γ). This
indicates that at the next stage we will start encoding z(0) into location a
for ws.

Note: with the explanation before the lemma this ensures that the coding happens
correctly. �

The construction using this coding lemma is now as follows: Let 〈Lβα | α < ω1〉
be an increasing enumeration of the levels Lα (α < ω1) that are isomorphic to their
own Skolem hull under enough of the definable Skolem functions for L. Start with
G0. Then recursively construct Gα for α < ω1. At limit ordinals take unions. To
get Gα+1 from Gα find the least βα such that Gα ⊆ Lβα . Find E ⊆ N × N such
that E ∈ Lβα+ω and (Lβα ,∈) ∼= (N, E). Let z ∈ 2ω be such that E is recursive
in z, and let F be the collection of permutations in Lβα such that for all f ∈ F
the group 〈Gα, f〉 is cofinitary. Then apply Lemma 8 to construct gα, and set
Gα+1 = 〈Gα, gα〉. Finally let G =

⋃
α<ω1

Gα.
G is maximal since all constructible reals are in Lω1 . Suppose there is f ∈

Sym(N) \ G such that 〈G, f〉 is cofinitary. Then f ∈ Lα for some α < ω1, which
means that f ∈ Lβα for cofinally many α < ω1. This means that as some step ζ in
the construction f is a member of the family F , which in turn means that f ∩ gζ is
infinite, which is a contradiction.

Miller’s method gives a Π1
1 formula ψ(g,m, γ) such that g ∈ G\G0 iff there exist

m and γ such that ψ(g,m, γ). This means that G can be defined by the formula
ψG0(g) ∧ ∃m ∈ N∃γ ∈ {0, 1}ψ(g,m, γ), which is clearly a Π1

1 formula.

3. There Does Not Exist a Kσ Maximal Cofinitary Group

A set is Kσ if it is a countable union of compact sets; every Kσ set is eventually
bounded in the following sense.

Definition 9. (i) We write ∀∗nϕ(n) if for all but finitely many n ∈ N, ϕ(n).
(ii) For f, g ∈ NN, f is eventually bounded by g, written f <∗ g, if ∀∗n f(n) <

g(n) (if there exists k ∈ N such that for all l > k, f(l) < g(l).
(iii) A set S ⊆ NN is eventually bounded if there exists f ∈ NN such that for all

g ∈ S, g <∗ f .

Theorem 10. If G is a cofinitary group that is eventually bounded, then G is not
maximal.

Proof. Let G be a cofinitary group that is eventually bounded. This means G is
contained in a set of the form {g ∈ NN | g <∗ f} where we can assume f : N → N is
a strictly increasing function with f(0) > 0. We will use this bound f to construct
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an interval partition, with a distinguished point in each interval, that we in turn
use to construct h ∈ Sym(N) \G such that 〈G, h〉 is cofinitary.

Define I =
〈(

[in, in+1), pn

)
| n ∈ N

〉
by i0 := 0, pn := f(in), and in+1 := f(pn).

The main property of this sequence is

∀g ∈ G ∀∗n g(pn) ∈ [in, in+1),

which follows easily from the fact that all elements of G are nearly everywhere
strictly bounded by f .

Define h by finite approximations: let h0 := ∅. Then at step s define hs+1 from
hs as follows:

(1) Let a := min(N \ dom(hs)), let n be the least number such that for all
l ≥ n we have [il, il+1) ∩

(
dom(hs) ∪ ran(hs) ∪ {a}

)
= ∅, and set h̄s+1 :=

hs ∪ {(a, pn)}.
(2) Let b := min(N \ ran(h̄s+1)), let m be the least number such that for all

l ≥ m we have [il, il+1) ∩
(

dom(h̄s+1) ∪ ran(h̄s+1) ∪ {b}
)

= ∅, and set
hs+1 := h̄s+1 ∪ {(pm, b)}.

Note that the a and b used in this construction satisfy a ≤ b ≤ a + 1. To see
this first note that the pn used go alternately into the domain and range, starting
with the range. Then by induction it follows that if a = b in an iteration then the
least number in dom(hs) ∪ ran(hs) \ a is in the range. If a+ 1 = b, then that least
number is in the domain. The note quickly follows from these facts.

The main properties of h are the following (for n > 0).
(1) If a ∈ [in, in+1) \ {pn} and (a, b) ∈ h, then b > in+1.
(2) If b ∈ [in, in+1) \ {pn} and (a, b) ∈ h, then a > in+1.
(3) If (a, pn), (pn, b) ∈ h, then at most one of a and b is less than in.
(4) If (a0, b0), (a1, b1) ∈ h ∪ h−1 and a0 < a1 < b0, then b1 < a0 or b1 > b0.

The first three of these follow from the observation that for any pair added to
h one of the coordinates is a pn and this pn is from a later interval than the other
coordinate is in (sometimes both coordinates are equal to pn for some n, but only
one is used as such in the construction). The last one follows from the fact that any
added pair has one coordinate strictly bigger than any number mentioned before
and the note on the order of a and b above.

Taking the first three properties of h together we get that for any n > 0 there is
at most one pair in h∪ h−1 with one coordinate in [in, in+1) and the other smaller
than in. From this we see that if l < in and hε(l) ∈ [in, in+1) for ε ∈ {−1,+1} then
hε(l) = pn. Moreover for m ∈ [in, in+1) \ {pn} both h(m) and h−1(m) are bigger
than in+1; this is also the case for hε(pn), but not for h−ε(pn) = l.

Now we show that 〈G, h〉 is cofinitary. Let us assume, towards a contradiction,
that w(x) = g0x

k0g1 · · · gkx
kmgm+1 ∈ WG is such that w(h) has infinitely many

fixed points. We can also assume that gm+1 = Id, since this only requires conjuga-
tion by gm+1 and this does not change the number of fixed points.

We normalize the word w further. For this we work above M , the least number
such that for all n ≥ M and all g ∈ G appearing in w we have g(n) < f(n). We
want a conjugate w′ of w of the form glx

klgl+1 · · · gm+1g0x
k0 · · ·xkl−1 such that

for infinitely many of its fixed points, n, the image after the first application of h
(if kl−1 > 0) or h−1 (if kl−1 < 0) is bigger than n. Such a conjugate w′ exists
if for infinitely many fixed points we can find a location in the evaluation path
where an application of h increases the number. So suppose that you can’t do this;
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then for all but finitely many fixed points every application of h leads to a smaller
number. In this case we can find an n, a fixed point of w(h) such that no point in
its evaluation path z̄ is less than M and for all i such that wi = hε, ε ∈ {+1,−1},
we have zi+1 < zi (remember zi+1 = wizi).

Now since we start in w(h) by applying h we get z1 < z0 = n. After this we
cannot get back to z0 as any application of a g appearing in w to a number less
than or equal to z1 will lead to a number strictly less than z0 (z0 is in the middle
of an interval which does not contain z1 and z0 is the f image of the start of the
interval it is in). And any application of h to a number strictly less than z0 will
lead to a number strictly less than z1 (follows from the assumption and 4). This
contradiction shows that a conjugate w′ as desired exists.

We will study this conjugate w′ of w; if it can’t have infinitely many fixed points
neither can w. There are only finitely many points whose evaluation path in w′(h)
involves natural numbers less than M . Leave these out of consideration.

Let z̄ be the evaluation path of w′(h) on n, a fixed point for this word where the
image after the first application of h is bigger than n. There is a least m such that
there is an a ∈ N such that zm+1 < ia ≤ zm.

If for some l we have zl+1 > zl by an application of h (either h or h−1) we have
zl+1 = pb for some b ∈ N. If we now apply h again (the same of h or h−1) we map
to a pm with pm > pb. So if we are in w′ at some xl, repeatedly applying h, once
we start increasing we will keep on increasing.

If after such applications of h where we increase we apply a g ∈ G as indicated
by w′, then g doesn’t map the element out of the interval it is in (we are working
above M ′ where no element of g appearing in w′ can map further than f or f−1).

Now we know that zm = pk for some k, zm+1 is obtained from zm by an appli-
cation of h, zm is obtained from zm−1 by an application of some g ∈ G and zm−1

is obtained from zm−2 by an application of h which was increasing. From the last
fact in the last sentence we know zm−1 = pl for some l. Since pl and pk are in the
same interval, pl = pk and we have found a fixed point for this g ∈ G.

So we have found from a fixed point of w′(h) a fixed point for some g ∈ G
appearing in w′. Also, any fixed point of a g ∈ G appearing in w′ can only be used
in the evaluation path of finitely many points (and only in the evaluation path of
one fixed point if g only appears once in w′). From this we see that if w′(h) has
infinitely many fixed points, so does some g ∈ G. This is the contradiction we were
looking for. �
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