
COMPARING NOTIONS OF RANDOMNESS

BART KASTERMANS AND STEFFEN LEMPP

Abstract. It is an open problem in the area of effective (algo-
rithmic) randomness whether Kolmogorov-Loveland randomness
coincides with Martin-Löf randomness. Joe Miller and André Nies
suggested some variations of Kolmogorov-Loveland randomness to
approach this problem and to provide a partial solution. We show
that their proposed notion of injective randomness is still weaker
than Martin-Löf randomness. Since in its proof some of the ideas
we use are clearer, we also show the weaker theorem that permu-
tation randomness is weaker than Martin-Löf randomness.

1. Introduction

There are currently many competing notions of randomness, based
on different intuitions of randomness. Some are based on the idea
that no random real should belong to certain measure zero sets, others
on the frequency interpretation of probability, and yet others on the
notion of a fair betting game. Some of these notions are known to be
equivalent, others are known to be not equivalent, and for yet others, it
is not known whether they are equivalent. This paper is a contribution
to this classification.

The notions of randomness we will be concerned with in this pa-
per are all based on the notion of a martingale. A martingale is a
formalization of the idea of a fair betting game; while betting on the
outcome of a coin flip the game would be fair if the expected value
of your capital after the game is the same as before the game. That
means that your win on heads is the same as your loss on tails. A
martingale then describes a game consisting of simple games like that
infinitely often repeated. Part of the intuition for using martingales
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to define randomness is that if the real is random you should not be
able to predict the bits; this means that in the game against the real
(considered as infinitely many games against bits) your capital will not
be unbounded.

For the different notions we study, the main differences lie in the
effectiveness of the martingale, the order in which the martingale bets
on bits, and the speed by which the martingale is required to suc-
ceed. One of the big open questions in the area is whether the notions
of Martin-Löf randomness (a notion of monotonic randomness with a
very weakly effective martingale) and Kolmogorov-Loveland random-
ness (a notion of nonmonotonic randomness with a somewhat more
effective, but not monotonic, martingale) coincide. Joe Miller and
André Nies [MN06MN06,MN06] suggested a weakening of Kolmogorov-
Loveland randomness as a way to approach this question. The weak-
ening involves limiting the freedom of the nonmonotonic martingale in
choosing the next bit to bet on.

We show that their notion of injective randomness does not coincide
with Martin-Löf randomness.

We start in the next subsection with the definitions of the different
types of martingales and some background. Then, in Section 2, we
prove that permutation randomness does not coincide with Martin-
Löf randomness. This is a weaker theorem than the theorem we show
in Section 3. However, the proof for the permutation random case
introduces many of the ideas in a simpler context.

1.1. The Definitions and Background. The space we are working
in is the Cantor space 2ω, the space of infinite sequences of zeros and
ones, with the topology induced by the sets [σ] = {A ∈ 2ω | σ ⊆ A} for
any σ ∈ 2<ω =

⋃
n∈N 2n, that is σ a finite sequence of zeros and ones.

If σ ∈ 2<ω then σ ∈ 2n for some n, we write |σ| for this n. Note that
when convenient we will use the convention that n = {0, . . . , n − 1},
so that for σ ∈ 2<ω, |σ| is both the length and the domain of σ. For
Σ ⊆ 2<ω, we write [Σ] for the set {A ∈ 2ω | ∀n ∈ N(A � n ∈ Σ)}.
We will also write, with some abuse of notation, [σ] ∩ 2<ω for the set
{τ ∈ 2<ω | σ � τ} and [σ] ∩ 2k for the set {τ ∈ 2k | σ � τ}.

A Martin-Löf test is a uniformly computably enumerable sequence
〈Σn ⊆ 2<ω | n ∈ N〉 such that µ([Σn]) ≤ 2−n, where µ is the Lebesgue
measure. A Martin-Löf test succeeds on a real A ∈ 2ω iff A ∈

⋂
n∈N[Σn].

The set of reals on which a given Martin-Löf test succeeds is a null set;
a Martin-Löf test is a particular notion of an effective null set. A real
A ∈ 2ω is Martin-Löf random iff no Martin-Löf test succeeds on it.
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The notion of a Martin-Löf random can also be explained using mar-
tingales. We will define our martingales in different ways. What we
give in the definitions will, however, always be enough so that given a
real A ∈ 2ω we can compute a function dA : N → R+

0 . Here dA(n) gives
the player’s capital after n bets. The martingale formulation of Martin-
Löf randomness will show a closer connection to the other notions of
randomness we will define and use.

We start by describing a martingale as a function f : 2<ω → R+
0

(where R+
0 is the set of nonnegative reals) such that for all σ ∈ 2<ω

we have f(σ) = f(σ0)+f(σ1)
2

, where σi denotes the concatenation of σ
with the sequence 〈i〉. A martingale succeeds on a real A ∈ 2ω iff
lim supn→∞ f(A � n) = ∞.

To give an obviously equivalent definition more in line with the def-
initions given later, we can define the capital function dA : N → R+

0

by setting dA(n) = f(A � n), the capital after n bets on A. Then
the martingale succeeds iff lim supn→∞ dA(n) = ∞ (this in particular
means that dA(n) ↓ for all n).

A martingale g is effective if there exists a computable function ĝ :
N× 2<ω → Q+

0 (where Q+
0 is the set of nonnegative rationals) which is

nondecreasing in the first coordinate and such that limn→∞ ĝ(n, σ) =
g(σ).

Theorem 1 (Schnorr [Sch71Sch71,Sch71]). A real is Martin-Löf ran-
dom iff no effective martingale succeeds on it.

A martingale is (partial) computable iff it is a (partial) computable
function f : 2<ω → Q+

0 . A real is (partial) computably random iff no
(partial) computable martingale succeeds on it. Clearly, any Martin-
Löf random is partial computably random, and any partial computably
random is computably random. However, these three notions do not
coincide:

Theorem 2 (Ambos-Spies [AS98AS98,AS98]). There are reals which
are computably random but not partial computably random.

Theorem 3 (Muchnik [MSU98MSU98,MSU98], Schnorr [Sch73Sch73,
Sch73]). There are reals which are partial computably random but not
Martin-Löf random.

Theorem 3 is a combination of Theorem 9.5 in Muchnik [MSU98MSU98,
MSU98] and Theorem 3 in Schnorr [Sch73Sch73,Sch73]. The proofs of
Theorems 1, 2, and 3 can also be found in [DHDH,DH] or [NieNie,Nie].

All the notions of randomness above have in common that the mar-
tingale bets on all the bits of the real in order, i.e., they bet monoton-
ically. A nonmonotonic betting strategy has the flexibility to choose
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which bits of the real to bet on (for instance, it might first bet on bit
number 5, and then depending on the outcome bet on bit number 2
or 7, respectively). The exact definition (as taken essentially from
[MMN+06MMN+06,MMN+06]) is as follows.

A scan rule is a partial function s : (ω × 2)<ω → ω such that for
all w ∈ (ω × 2)<ω we have that s(w) 6∈ dom(w). Given the history of
play—a sequence of bit locations and their values—the scan rule selects
the next bit to bet on. The requirement s(s) 6∈ dom(w) corresponds to
not being allowed to bet on a bit you have already seen.

Given a real A ∈ 2ω, the scan rule selects a real Ã; however, the scan
rule, and a betting strategy using it, use the full history of the play.
This means that the object of interest is Ā : ω → (ω × 2)<ω defined as
follows:

Ā(0) =
(
s(∅), A(s(∅))

)
,

Ā(n) =
(
s(Ā � n), A(s(Ā � n))

)
.

From this, the real played, Ã, can be defined by Ã(n) = π1(Ā(n)).
Also, if τ ∈ 2<ω, then we can in the same way define τ̄ � m for each m
such that for all n < m, s(τ̄ � n) ∈ |τ |.

A stake function is a partial function q : (ω × 2)<ω → [0, 2]. The
stake function gives the bet towards the next bit selected being 0. A
nonmonotonic betting strategy is a triple (λ, s, q) where λ ∈ R+ is the
initial capital, s is a scan rule, and q a stake function. Define the
capital after play n recursively by

dA
(λ,s,q)(0) = λ,

dA
(λ,s,q)(n + 1) =

{
dA

(λ,s,q)(n)q(Ā � n) , if Ã(n) = 0;

dA
(λ,s,q)(n)(2− q(Ā � n)) , if Ã(n) = 1.

We also use dσ
(λ,s,q)(n) when σ ∈ 2<ω. This is defined as follows:

dσ
(λ,s,q)(n) = dA

(λ,s,q)(n) for A ∈ [σ] if all the bits used are from σ,

otherwise dσ
(λ,s,q)(n) is undefined.

We say the betting strategy (λ, s, q) succeeds on A iff

lim sup
n→∞

dA
(λ,s,q)(n) = ∞.

A real is Kolmogorov-Loveland random if no computable nonmono-
tonic betting strategy succeeds on it. (Here, we may assume without
loss of generality that all reals involved in any computable betting
strategy, that is λ and the outputs of q, are actually rational. This
assumption makes the notion simpler.)

The following theorem about these notions is well known.
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Theorem 4 (Muchnik [MSU98MSU98, MSU98]). Every Martin-Löf
random real is Kolmogorov-Loveland random.

However, the following question is a major open question in the area
of randomness. It was first posed in Muchnik et al. [MSU98MSU98;
MSU98, Question 8.11] (the wording is different there; chaotic is the
same as ML-random, and unpredictable is the same as KL-random).
It is also the last remaining open question from Ambos-Spies and
Kučera [ASK00ASK00; ASK00, Open Problem 2.9] (the wording is
different there, too; nonmonotonic computable random is the same as
Kolmogorov-Loveland random, and Σ0

1-random is the same as Martin-
Löf random).

Question 5. Do the notions of Martin-Löf randomness and Kolmo-
gorov-Loveland randomness coincide?

In Miller and Nies [MN06MN06,MN06], some weakenings of Kolmogorov-
Loveland randomness are suggested as a way of approaching this ques-
tion. They define restrictions of nonmonotonic betting strategies by
how the sequence of bits bet on is generated.

Let h : ω → ω be an injection. Then we can bet on bit h(n) in the
nth round of betting: a betting strategy that uses h in the selection of
bits is a betting strategy (λ, s, q) with s(σ) = h(|σ|) for all σ ∈ 2<ω.
We will write (λ, h, q) for the betting strategy in case s is computed
from h in this fashion. (Thus the selection of bits no longer depends
on the values of the previous bits bet on.)

Miller and Nies then use this to define several notions of randomness
(where q is always a partial computable stake function): A real is
permutation random if no partial betting strategy succeeds where h
is any partial computable permutation of ω; and injective random iff
no partial betting strategy succeeds where h is any partial computable
injection. Since a betting strategy using an h that is not total does not
succeed on any real, these notions stay the same if we only require h
to be partial. These notions however would change if we required the
stake function to be total (in fact, total permutation random (where
both the permutation and the stake function are total) is the same as
computably random).

It is not hard to see that Kolmogorov-Loveland randomness implies
injective randomness, which in turn implies permutation randomness.
Miller and Nies now ask whether one can at least separate the latter
two notions from Martin-Löf randomness. In this paper, we show that
injective randomness can be separated from Martin-Löf randomness:
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Theorem 6. There is a real A ∈ 2ω which is injective random but not
Martin-Löf random.

We call (λ, h, q) a partial computable permutation (resp. injective)
martingale if λ ∈ Q, h is a partial computable permutation (resp.
injection), and q is partial computable. Since it will always be enough
to ensure that no martingale with initial capital 1 succeeds we will only
deal with such martingale and write (h, q) for (1, h, q).

To introduce many of the ideas we will use in an easier context
we will first prove the following weaker theorem. We think the three
main ideas in that proof (expected martingale, monotonizing, and the
method of dealing with partiality) are also of independent interest.

Theorem 7. There is a real A ∈ 2ω which is permutation random but
not Martin-Löf random.

Note that the idea of an expected martingale, which is basic to all our
considerations, was already used by Buhrman et al. [BvMR+00BvMR+00,
BvMR+00].

2. The Proof for Permutation Randomness

We need to construct a real A ∈ 2ω and a computable function g : N×
2<ω → [0,∞) (where we write gs(ν) for g(s, ν)) which is nondecreasing
in the first coordinate such that g = lims→∞ gs(σ) is a martingale
which succeeds on A and such that no partial permutation martingale
succeeds on A. In fact, in our construction, for every s, σ 7→ gs(σ) will
be a martingale.

2.1. Giving the Strategies Money. In our construction, we will
have certain strategies active at different nodes. These strategies will
perform certain computations and as a result need to make certain
bets, winning (or not losing too much) money along a certain string.

To have every possible strategy be able to do so, we note that 1 =
Σ∞

i=1(
1
2
)i. The ith active strategy can use capital (1

2
)i from the root.

This means that if it is active at a node σ, at σ it has a capital of c =
(1

2
)i2|σ| to use there. It will have either some finite number l or infinitely

many substrategies. In case there are finitely many substrategies, each
can use capital c

l
at σ, or equivalently 1

l
(1

2
)i from the root. In case

there are infinitely many substrategies, the jth one can use capital c(1
2
)j

at σ, or equivalently (1
2
)i+j from the root. If one of the substrategies

succeeds at some stage s it finds a node τ extending σ satisfying certain
properties. It will then change gs(·) to gs+1(·) using its capital c′ from
the root along τ as follows: for all ν 6∈ [τ ] ∪ {η ∈ 2<ω | η ≺ τ},
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gs+1(ν) := gs(ν); for all ν ≺ τ , gs+1(ν) := gs(ν) + c′2|ν|; and for all ν ∈
[τ ], gs+1(ν) := gs(ν) + c′2|τ |.

Organizing the construction this way, we will ensure that the mar-
tingale f we construct has initial capital less than 1. It will not have
capital exactly equal to 1 as then it would be closely approximable by a
computable martingale, something we know cannot happen (the mar-
tingale we construct wins on a real on which no partial permutation
martingale wins; therefore certainly no computable martingale wins on
it).

2.2. Combining Martingales. The collection of monotonic martin-
gales has some easy but important closure properties. If f and g are
monotonic martingales, then so are cf , for any c ∈ R+, and f + g.

If we have an enumeration of martingales 〈fi | i ∈ N〉 with initial
capital less than or equal to 1 and we want to find a real A ∈ 2ω such
that none of the martingales fi succeeds on A, we can go about this
as follows: First we find a σ0 on which f0 does not gain too much, i.e.,
f0(σ0) < 2 (in fact we can make sure it makes no gain at all). On σ0,

the martingale f1 might have gained a lot, therefore set s1 = 2−f0(σ)
2f1(σ)

and

notice that then f0(σ0) + s1f1(σ0) < 2. So we can find an extension σ1

of σ0 where the martingale f0 + s1f1 does not gain too much; i.e., still
has capital less than 2. Note that there f0 or f1 could have increased,
but not too much, since f0(σ1) < 2 and f1(σ1) < 2s1. If we can iterate
this construction, we have found A as required (namely, A =

⋃
i∈N σi).

The difficulty is that since the martingales we have to beat are not
monotonic, we cannot add them in this way. The way to overcome this
difficulty is shown in the following sections.

2.3. Monotonizing a Martingale. If (λ, s, q) is a total nonmono-
tonic martingale, then we can define dexpec

(λ,s,q) : 2<ω → [0,∞), the ex-

pected capital function. We will work with the case that s is obtained
from an injection h : N → N (slightly more general than we need) and
initial capital 1. Then we can define dexpec

(h,q) as follows:

For σ ∈ 2<ω, let nσ, lσ ∈ N be such that

lσ > |σ|,
ran(h � nσ) ⊆ lσ, and

ran(h) ∩ dom(σ) = ran(h � nσ) ∩ dom(σ).

This means that after nσ many bets, all bets on σ will have been placed,
and to complete these bets, no bets beyond the lthσ bet are needed. Then
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define

dexpec
(h,q) (σ) :=

∑
τ∈2lσ

σ≺τ

dτ
(h,q)(nσ)2−(lσ−|σ|),

where dτ was defined on page 4.

Lemma 8. dexpec
(h,q) is a well-defined monotonic martingale.

Intuitively, this lemma is clear from the probabilistic interpretation,
but we give here a combinatorial proof.

Proof. In the context of this proof, we drop the subscript (h, q) from
the martingales.

Given σ ∈ 2<ω, we have to show

(1) that in the computation of dexpec, for any values n and l which
satisfy the requirements, we compute the same value; and

(2) that for all σ,

dexpec(σ) =
dexpec(σ1) + dexpec(σ0)

2
.

For (1), first let n, l, l′ ∈ N be such that both pairs (n, l) and (n, l′)
satisfy the requirements in the definition of dexpec and such that l′ > l.
Then

∑
σ≺τ ′∈2l′

dτ ′(n)2−(l′−|σ|) =
∑

σ≺τ∈2l

 ∑
τ≺τ ′∈2l′

dτ ′(n)2−(l′−|σ|)


=
∑

σ≺τ∈2l

 ∑
τ≺τ ′∈2l′

dτ (n)2−(l′−|σ|)


=
∑

σ≺τ∈2l

dτ (n)2−(l′−|σ|)
∑

τ≺τ ′∈2l′

1


=
∑

σ≺τ∈2l

dτ (n)2−(l′−|σ|)2l′−l

=
∑

σ≺τ∈2l

dτ (n)2−(l−|σ|).

Next, let n, l ∈ N be such that the pair (n, l) satisfies the requirement
in the definition of dexpec and such that h(n+1) = i < l. If τ ∈ 2l, then
let τ̃ ∈ 2l be such that τ̃(i) = 1− τ(i), and such that for all j < l with
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j 6= i, τ̃(j) = τ(j). Then (remembering the definition of τ̄ on page 4)∑
σ≺τ∈2l

dτ (n)2−(l−|σ|) =

=
1

2

∑
σ≺τ∈2l

(q(τ̄ � n) + (2− q(τ̄ � n))) dτ (n)2−(l−|σ|)

=
1

2

∑
σ≺τ∈2l

(
(q(τ̄ � n)dτ (n)2−(l−|σ|)) + (2− q(τ̄ � n))dτ (n)2−(l−|σ|))

=
1

2

∑
σ≺τ∈2l

(
dτ (n + 1)2−(l−|σ|) + dτ̃ (n + 1)2−(l−|σ|))

=
1

2

( ∑
σ≺τ∈2l

dτ (n)2−(l−|σ|) +
∑

σ≺τ∈2l

dτ̃ (n)2−(l−|σ|)

)
=

∑
σ≺τ∈2l

dτ (n + 1)2−(l−|σ|).

Note that in the third equality, the terms might be reordered (depend-
ing on whether τ(i) = 0).

This shows that in the definition of dexpec, the exact values of n and l
are irrelevant as long as they are big enough. It remains to show (2),
i.e., that dexpec satisfies the martingale equation. So let both n and l
be large enough, then

dexpec(σ) =
∑

σ≺τ∈2l

dτ (n)2−(l−|σ|)

=
∑

σ≺τ∈2l

τ(|σ|)=0

dτ (n)2−(l−|σ|) +
∑

σ≺τ∈2l

τ(|σ|)=1

dτ (n)2−(l−|σ|)

=
1

2
dexpec(σ0) +

1

2
dexpec(σ1).

�

There are now two problems to overcome. Firstly, we need to see
that we can use dexpec to beat the original nonmonotonic martingale,
and secondly, that we can have a sufficiently computable version of it.

The problem with seeing that dexpec succeeds on the same reals that
the nonmonotonic martingale (s, q) succeeds on is simplified by taking
the slowly-but-surely winning version of (s, q) (also known as the saving
version of (s, q)). The problem solved by this is that dexpec does not
reflect all fluctuations that appear in the capital history of (s, q).
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Lemma 9. Let (s, q) be a partial computable nonmonotonic martingale.
Then there exists a partial computable nonmonotonic martingale (s̄, q̄)
that succeeds on the same reals as (s, q) where the capital function d̄ of
(s̄, q̄) satisfies

∀σ ∀τ (d̄(στ) > d̄(σ)− 2), and

∀σ (d̄(σ) < 2(|σ|+ 1)).

A version of this well known lemma can be found as [BvMR+00BvMR+00;
BvMR+00, Lemma 2.3, p. 579], and the computations in their proof
immediately generalize to this context, so we will not repeat them here.
The intuition is that in the betting of the martingale every time your
capital increases to more than 2, you take 2 from your capital and
“keep it in the bank” and only continue betting with the remaining
little bit of capital. This way your capital can never decrease by more
than 2. If the original martingale succeeds, then infinitely often the
little bit of capital you are betting with will increase above 2 so that
this martingale succeeds as well.

Now for a nonmonotonic martingale (s, q), define dss−expec to be the
expected capital function computed for the slowly-but-surely winning
version (s̄, q̄) of (s, q).

Lemma 10. dss−expec is a monotonic martingale which succeeds every
real on which (s, q) succeeds.

Proof. Let A ∈ 2ω be a real on which (s, q) succeeds. Then (s̄, q̄) also
succeeds on A. We need to see that for every L, there is an n ∈ N such
that dss−expec(n) as computed along A is greater than L.

Let k be such that d̄(k) > L + 2, and let σ ≺ A be such that
all bets that are made in the computation of d̄(k) are made on σ.
This means that by the slowly-but-surely winning condition for all τ
extending σ and all l ≥ k, we have d̄τ (l, τ) > L. This in turn implies
that dss−expec(σ) > L as was to be proven. �

The final bit of analysis of dss−expec that is needed is to come up with
a usable condition under which we can compute it. Existence of nσ

and lσ for any σ is clear, but it is not clear under what conditions they
can be found computably. We next give such conditions.

Say we have already decided on σ0 as the initial segment of the
real A we are constructing, and that we now want to extend it to
length k > |σ0|. Then we want to be able to compute dss−expec on
[σ0] ∩ 2k.
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Lemma 11. For a total nonmonotonic martingale (s, q) where q is
obtained from an injective h : N → N and σ0 and k are as in the
paragraph above, we can compute dss−expec on [σ0]∩2k from | ran(h)∩k|.

Proof. From | ran(h) ∩ k|, we can compute an n such that ran(h �
n)∩k = ran(h)∩k, i.e., after n many bets, all bets on every τ of length k
will have been made. This means that dss−expec can be computed on
any τ using nτ = n and lτ = max{ran(h � n)}. �

Note that the hypothesis needed for dss−expec to be computable is ob-
viously satisfied for permutation martingales as then always | ran(h) ∩
k| = k.

2.4. Partiality. Initially, dealing with partial permutation martin-
gales seems straightforward. Once you have decided on σ0 as an initial
segment for the real and (h, q) is the next permutation martingale to
consider, the strategy working under the assumption that (h, q) is par-
tial should just look for an extension τ of σ0 where (h, q) diverges. The
problem with this is that the earlier martingales already considered, of
which all the ones which are “sufficiently total” have been combined
into a single monotonic martingale fmon, might make a large gain on
each such τ .

The situation we have is σ ∈ 2<ω, a monotonic martingale fmon

which is total on [σ] ∩ 2<ω and for which fmon(σ) < 2, and a partial
permutation martingale (h, q). We have to find τ � σ such that either
d(h,q) diverges on τ , or we have a method of adding d(h,q) to fmon.

We need to be explicit about what we mean when d(h,q) diverges
on τ . For this, we define dτ

(h,q) ↑∗ by

∃i
(
ran(h � i) ( |τ |∧h(i) ↑

)
∨∃i

(
ran(h � i) ⊆ |τ |∧∃n < i (q(τ̄ � n) ↑)

)
,

and dτ
(h,q) ↓∗ as its negation (note that it will often be the case that for

τ ≺ τ ′ we have that dτ
(h,q) ↓∗ and dτ ′

(h,q) ↑∗; this happens for instance

when h(0) ∈ |τ ′| \ |τ | and h(1) diverges).
The case distinction which needs to be made is the following:
Either

(C:↑) ∃τ � σ
(
fmon(τ) < 2 ∧ dτ

(h,q) ↑∗
)
,

or

(C:↓) ∀τ � σ
(
fmon(τ) < 2 → dτ

(h,q) ↓∗
)
.

The strategy is then as follows: In case (C:↑), we search for such
a τ . That is, at stage s, we assume that any computation which
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does not converge within s steps diverges, and we look for the length-
lexicographically first τ which satisfies (C:↑).

In case (C:↓), we will find a total (on [σ]) permutation martingale

d̃(h,q) which is equal to d(h,q) everywhere where fmon is less than 2. The

idea is that in order to compute d̃τ
(h,q)(n), we find the largest part of

τ where fmon is less than 2, and give d̃ on τ the value of d(h,q) on that
part. Essentially this means as soon as we lose the guarantee — from
the assumption that we are in case (C:↓) — that d(h,q) converges, we
always bet even.

We need to be somewhat careful with what “largest part” means,
since we do need the property that if ν0 and ν1 are such that ν0 �
ran(h � j) = ν1 � ran(h � j) (that is ν0 and ν1 agree on the bit values

of the first j places inspected) then for all i < j, d̃ν0

(h,q)(i) = d̃ν1

(h,q)(i).

The martingale is now defined as follows: To compute d̃τ
(h,q)(n) for

τ � σ, search for the maximum j ≤ n such that there is a τ ′ � σ
satisfying τ ′ � ran(h � j) = τ � ran(h � j) and fmon(τ

′) < 2. Then set

d̃τ
(h,q)(n) := dτ ′

(h,q)(j). Note that this converges by the case assumption

(and is equal to dτ
(h,q)(j)).

2.5. Putting it all together. Let 〈(hi, qi) | i ∈ N〉 be an enumeration
of all partial permutation computable martingales with initial capital 1.
We need to find an A ∈ 2ω on which none of these martingales succeeds
(showing that A is permutation random) and construct an effective
martingale g which does succeed on A (showing that A is not Martin-
Löf random). We will define 〈gi | i ∈ N〉 so that g(σ) = limi→∞ gi(σ)
and the sequence of gi is uniformly computable. Let g0 : 2<ω → R+

0 be
the constant 0 martingale.

The strategy N(i, σ, ε0, . . . , εi−1) (where, from now on, we will write
ε̄ for ε0, . . . , εi−1) is the strategy with the following parameters

• i, the number of martingales supposedly already dealt with
on σ,

• σ, indicating the cone, [σ], on which this strategy will act, and
• εj ∈ {0, 1} (for j < i), denoting whether the previous strategies

were able to find a τ where (hj, qj) diverges and f ε̄�j+1
j (τ) < 2

(if εj = 0) or where (hj, qj) converges on every extension τ

of σ where f ε̄�j+1
j (τ) < 2 (if εj = 1). Here and below, f ε̄�j+1

j is
one of the monotonic martingales constructed by the strategy
N(j, σ′, ε̄ � j) where σ′ ≺ σ.

This strategy performs two kinds of actions:
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• it will start new strategies N(i + 1, τ, ε̄ε) where σ ≺ τ and
ε ∈ {0, 1}, and

• it will at various times define gs+1 from gs.
• it will (attempt to) define f ε̄ε

i for ε ∈ {0, 1}.

In fact, whenever a new strategy is started a new gs+1 will also be
defined. It is important to note here that s is not determined by this
strategy, but by the overall results of all strategies active so far. In
all cases, s will be the maximum value such that gs is defined. If we
think of defining gs+1 from gs as modifying the martingale g, then s
is the number of times we have already modified g before (this is the
terminology we will use below).

If N(i, σ, ε̄) is the j-th active strategy, then the strategy as a whole
can use capital C := (1

2
)j from the root (as explained in Section 2.1).

Since this strategy will possibly infinitely often modify g, it partitions
C =

∑
l∈N cl (where all cl > 0) and uses these parts from C as appro-

priate (c0 is used for the case (C:↓), and cl+1 is used for the l-th time
the actions for the case (C:↑) modify g).

Define f̂ ε̄�j
j to be the monotonic martingale d̃ss−expec

(hj ,qj)
determined from

d(hj ,qj) and the monotonic martingale f ε̄�j
j−1 as in the previous section

(where f ∅−1 ≡ 0).
In case ∀ν � σ (f ε̄

i−1(ν) < 2 → dν
(hi,qi)

↓∗), i.e., in case (C:↓), N(i, σ, ε̄)

has to find a long enough extension τ of σ such that f ε̄1
i (τ) := f ε̄

i−1(τ)+

sif̂
ε̄
i (τ) < 2, where si is determined below in the second substrategy.

In the other case, (C:↑), it has to find a long enough extension of a τ
such that f ε̄0

i (τ) := f ε̄
i−1(τ) < 2 and dτ

(hi,qi)
↑∗, which then exists. The

next paragraph explains what long enough means.
Since we need to ensure g wins on the real A we construct, and the

τ are approximations to this A, the strategy N(i, σ, ε̄) ensures that
g(τ) ≥ 2i. So for case (C:↓) it looks for a τ such that c02

|τ | ≥ 2i,
and in case (C:↑) if active for the l-th time we look for a τ such that
cl+12

|τ | ≥ 2i.
At stage s in the construction, this strategy computes everything for

at most s steps.
The first substrategy looks for the length-lexicographically least τ ′ �

σ such that dτ ′

(hi,qi)
↑∗ and f ε̄

i−1(τ
′) < 2, and then for the least τ � τ ′

such that f ε̄
i−1(τ) < 2 and cl+12

|τ | > 2i where l is the number of times
this substrategy has been active before. If this τ ′ is different from
the τ ′ we found in earlier stages (which means that the computation
on that earlier τ ′ has converged), this substrategy becomes active. We
then stop the previous strategies N(i + 1, τ ′′, ε̄0) we started, and start
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N(i + 1, τ, ε̄0). Also, we define gs+1 from gs using capital cl+1 from the
root along τ ′ (as explained in Section 2.1), where s is the number of
times we have already modified the martingale g before.

It is clear that in case (C:↑) (where σ = σ, fm = f ε̄
i−1, and (h, q) =

(hi, qi)) and where ε̄ is correct, this strategy succeeds; it will find a pair
(τ, τ ′) which permanently satisfies the requirement.

Simultaneously, for the second substrategy, we wait for a stage at

which f̂ ε̄
i and f ε̄

i−1 converge on σ. Then we set si := 1
2

2−f ε̄
i−1(σ)

f̂ ε̄
i (σ)

(to

ensure f ε̄1
i (σ) < 2). After this stage, we search for the length-lexico-

graphically least τ � σ such that f ε̄1
i (τ) < 2 and c02

|τ | > 2i. If we
find such a τ , we start the strategy N(i + 1, τ, ε̄1) and define gs+1

from gs using capital c0 from the root along τ (as explained in Section
2.1), where s is the number of times we have already modified the
martingale g before.

It is clear that in case (C:↓) (where σ = σ, fm = f ε̄
i−1, and (h, q) =

(hi, qi)) and where ε̄ is correct, this strategy succeeds.
We start the construction by starting N(0, ∅, ∅).

2.6. Verification. Recursively (but certainly not computably!), de-
fine σi and εi (where σ−1 = ∅) as follows.

We set εi = 1 if (C:↓) is true for σ = σi−1, fmon = f ε̄
i−1, and

(h, q) = (hi, qi). In that case, we set σi = τ where τ is found by
the strategy N(i, σi−1, ε̄ � i) by its second substrategy. Note that then
N(i + 1, σi, ε̄ � i, 1) is started.

We set εi = 0 if (C:↑) is true for σ = σi−1, fmon = f ε̄
i−1, and (h, q) =

(hi, qi). In that case, we let τ ′ ∈ 2<ω be the length-lexicographically
least element of [σi−1] ∩ 2<ω for which dτ ′

(hi,qi)
↑∗, f ε̄

i−1(τ
′) < 2, and s

is a stage at which for all ν length-lexicographically before τ ′, dν
(hi,qi)

converges in fewer than s steps if f ε̄
i−1(ν) < 2. Then, at stage s, the

first substrategy of N(i, σi−1, ε̄ � i) will pick τ ′ as well as an extension
τ of τ ′ (if it hadn’t already done so at an earlier stage), and we will
never again find a new pair (τ ′, τ). Then set σi = τ . Note that then
N(i + 1, σi, ε̄ � i, 0) is started and never stopped thereafter.

Define A :=
⋃

i∈N σi. Note that clearly g succeeds on A since g(σi) ≥
2i (as a result of the modification of g done by N(i, σi−1, ε̄ � i) when
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N(i + 1, σi, ε̄ � i + 1) was started). Note that A is ∆0
3, since

σ ≺ A ⇔ ∃ε̄(ε̄ is correct ∧ σ is obtained when running

the construction above knowing ε̄)

⇔ ∀ε̄(ε̄ is correct → σ is obtained when running

the construction above knowing ε̄).

Here the statement “ε̄ is correct” is ∆0
3, and with that information

determining the outcome of the construction is Σ0
2.

We need to see that none of the partial computable permutation
martingales (hi, qi) succeeds on A. Suppose that (hi, qi) succeeds on A.

We will derive a contradiction to the fact that for all i ∈ N, f ε̄�i+1
i (σi) <

2.
We know that if (hi, qi) succeeds on A, then d̂ε̄�i

i also succeeds on A
(note that this in particular implies that (C:↓) is the correct case for
strategy N(i, σi−1, ε̄ � i), i.e., εi = 1). Pick γ such that σi ≺ γ ≺ A and

d̂ε̄�i
i (γ) > 2

si
+ 2. Since d̂ε̄�i

i is a slow-but-sure martingale, this means

that for all ν � γ, we have d̂ε̄�i
i (ν) > 2

si
. This holds in particular for

any j such that σj � γ (which implies j ≥ i). But this in turn implies
that

f ε̄�j+1
j (σj) =

∑
l≤j
εl=1

sld̂
ε̄�l
l (σj) > sid̂

ε̄�i
i (σj) > 2,

which contradicts the choice of σj, showing that (hi, qi) does not suc-
ceed on A.

3. The Proof for Injective Randomness

We again need to construct a real A ∈ 2ω and a computable function
g : N×2<ω → [0,∞) which is nondecreasing in the first coordinate and
such that g = lims→∞ gs is a martingale which succeeds on A. This
time no partial injective martingale can succeed on A.

When dealing with partial injective martingales we have no hope of
producing a martingale with the same good properties the expected
martingale had for partial permutation martingales. We were able to
come up with a sufficient approximation, however. The idea is to ig-
nore most bits, and to only look for bits of a given type. If this type
is chosen, or rather guessed, correctly then we can use this approxi-
mation, the average operator, to construct a sequence of clopen sets of
decreasing measure (a Martin-Löf test). We can then prove that in the
intersection of these clopen sets there is a real on which none of the
partial injective martingales wins. Since we do not know the correct
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guesses, we construct a Martin-Löf martingale that combines all our
different attempts, and in particular will include all the correct guesses.

Let 〈fi = (hi, qi) | i ∈ N〉 be an enumeration of all partial injective
martingales (with initial capital 1); without loss of generality we can
assume that all these martingales are slow-but-sure.

3.1. Types of Bits. The main difficulty to solve in this proof is that
not all martingales bet on all bits. This means that during the con-
struction you never know whether the betting on a bit is done (un-
less you happen to stumble upon a bit on which all martingales you
are considering make a bet). The solution is to make guesses as to
which martingales will bet on a bit. This does not work completely
straightforward—we need a method to bring the number of guesses we
have to make down to a manageable number.

Let us assume we are in the part of the construction where we are
considering the first n+1 martingales, f0, . . . , fn. Let A ∈ N2 be a real
and k ∈ N a bit location. If T ⊆ {0, . . . , n} is such that during the
betting, the martingales fi bet on location k iff i ∈ T , then we know
when the betting on location k is done (that is when all fi for i ∈ T
have bet on bit k). Not knowing what the appropriate T is, we need to
guess for it. If our guess T is correct for infinitely many bit locations
then we could hope to use it in our construction.

However, the locations for which T is correct cannot be recognized
during the construction, since there might also be infinitely many bits
for which the correct guess is a proper superset of T . If then we see all
martingales in T bet on a location and we act on this, we might still
act inappropriately since more martingales might bet on this location.
The solution is to not just guess for such T but to guess for maximal
such T . We work this out in detail below.

Definition 12. We say martingale fi = (hi, qi) bets on bit k iff there
is an n ∈ N such that hi(n) = k.

Note that since the locations the martingale fi bets on are deter-
mined by the injection hi, they do not depend on the real, i.e., if fi

bets along A ∈ 2ω bets on location k, then for all B ∈ 2ω fi, bets
on location k when betting on B. This shows that the notion in the
next definition is well-defined. Also note that even when fi bets on a
bit k, it might still be the case that the partial function qi does not
sufficiently converge along a certain real to compute the value of the
martingale.
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Definition 13. The set typen(k) = type(n, k) ⊆ {0, . . . , n} is defined
by i ∈ typen(k) iff i ≤ n and fi bets on bit k. We will say k is of n-type
T iff typen(k) = T .

We need the following observations:

• For all n ∈ N,

N =
∐

T⊆{0,...,n}

{k ∈ N | typen(k) = T}

(here
∐

denotes disjoint union).
• If k is of n-type T , then when all fi for i ∈ T have bet on k no

more bets on k will be made. More precisely, if t is such that
for all i ∈ T we have k ∈ ran(hi � (t+1)) then for all t′ > t and
all i ≤ n we have that hi(t

′) 6= k.
• Let K ∈ N. If T is ⊆-maximal in

{T ⊆ {0, . . . , n} | ∃k > K type(n, k) = T},
and we find k > K and t such that for all j ∈ T , martingale
fj bets on k before or on bet t (k ∈ ran(hi � (t + 1))), then
type(n, k) = T and no more bets will be made on k.

• If T is ⊆-maximal in

{T ⊆ {0, . . . , n} | ∃∞k > l type(n, k) = T},
then there is a K ∈ N such that s is ⊆-maximal in

{T ⊆ {0, . . . , n} | ∃k > K type(n, k) = T}.
The last observation motivates the guesses we will make; our guesses

will be of the form (K, T ). And this represents the guess that T is a
maximal type appearing infinitely often, and K is big enough so that
the finitely many bits whose type is a proper superset of T appear
below level K.

3.2. The Average Operator. In this subsection, we work under the
assumption that the martingales involved are total. In the next sub-
section, we show how to deal with partiality.

Let σ : ω ⇀ 2 be finite (i.e. σ is a finite partial map from ω to 2)
and t a number such that for all k ∈ dom(σ) if j ∈ type(n, k), then
fj has bet on k before its (t + 1)st bet, that is t is so large that after
t bets all bets that will be made on σ have been made. Now let l be
such that all bets by martingales fj (j ≤ n) that are made before the
(t + 1)st bet are made on bits k < l (ran(hj � (t + 1)) ⊆ {0, . . . , l− 1}).

If (t, l) satisfies the requirements in the previous paragraph then we
say (t, l) is sufficiently out there (for σ and n).
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For (t, l) sufficiently out there, define

Av(t,l)
n (σ) :=

∑
τ∈2l

σ≺τ

2−(l−|σ|)(
∑
j≤n

f t
j (τ)).

The following two lemmas show some essential properties of Av.

Lemma 14. If both (t0, l0) and (t1, l1) are sufficiently out there for σ

and n, then Av(t0,l0)
n (σ) = Av(t1,l1)

n (σ).

This follows immediately from the martingale property of the fj

(j ≤ n). It shows that we can write Av(σ) for Av(t,l)(σ) where (t, l) is
any pair that is sufficiently out there.

Lemma 15. If k 6∈ dom(σ), σ0 = σ ∪ {(k, 0)}, and σ1 = σ ∪ {(k, 1)},
then

Avn(σ) =
Avn(σ0) + Avn(σ1)

2
.

This is proved exactly as Lemma 8 after choosing (t, l) sufficiently
out there for all three computations.

Definition 16. If T ⊆ {0, . . . , n} we define the restricted Av operator,
AvT , as follows: Let (t, l) be sufficiently out there for n and σ. Then

AvT (σ) =
∑
τ∈2l

σ≺τ

2−(l−|σ|)(
∑
j∈T

f t
j (τ)).

Clearly the analogues of Lemma 14 and Lemma 15 hold for AvT .
Note also that there is a weaker notion of (t, l) being T -sufficiently out
there for σ which just requires (t, l) to be such that dom(σ) ∩ ran(hi �
t) = dom(σ) ∩ ran(hi) for i ∈ T and max(ran(hi � t)) ≤ l. Then just
like in Lemma 14 the exact value of (t, l) does not influence the value
of AvT computed using it.

Lemma 17. Let k 6∈ dom(σ), let bit k be of type T , and T ⊆ S ⊆
{0, . . . , n}. If AvT (σ ∪ {(k, i)}) ≤ AvT (σ ∪ {(k, 1− i)}), then AvS(σ ∪
{(k, i)}) ≤ AvS(σ ∪ {(k, 1− i)}).
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We see this is true by the following computation, where σi denotes
σ ∪ {(k, i)} and (t, l) is sufficiently out there:

AvS(σi) =
∑
τ∈2l

σi≺τ

2−(l−|σi|)(
∑
j∈S

f t
j (τ))

=
∑
τ∈2l

σi≺τ

2−(l−|σi|)(
∑

j∈S\T

f t
j (τ)) +

∑
τ∈2l

σi≺τ

2−(l−|σi|)(
∑
j∈T

f t
j (τ))

∗
=

∑
τ∈2l

σ1−i≺τ

2−(l−|σ1−i|)(
∑

j∈S\T

f t
j (τ)) + AvT (σi)

≤
∑
τ∈2l

σ1−i≺τ

2−(l−|σ1−i|)(
∑

j∈S\T

f t
j (τ)) + AvT (σ1−i)

=
∑
τ∈2l

σ1−i≺τ

2−(l−|σ1−i|)(
∑

j∈S\T

f t
j (τ)) +

∑
τ∈2l

σ1−i≺τ

2−(l−|σ1−i|)(
∑
j∈T

f t
j (τ))

=
∑
τ∈2l

σ1−i≺τ

2−(l−|σ1−i|)(
∑
j∈S

f t
j (τ))

= AvS(σ1−i).

Equality (∗) follows since |σi| = |σ1−i| and for j ∈ S \T the martingale
fj does not bet on bit k.

What this all achieves is that when we have a correct guess for the
type, we can computably find which of zero or one does not increase
the average value.

3.3. Partiality. We are going to use a similar strategy to the case
of partial permutation martingales to deal with partiality. Note that
we cannot define monotone martingales associated to partial injective
martingales, so the details will look different.

Let σ denote the partial string (partial function ω ⇀ {0, 1}) that has
already been determined, P a set of indices for which earlier strategies
have determined that the associated martingales are partial, n ∈ N
the index of the next martingale to consider, and for j ∈ {0, . . . , n −
1} \ P , write f̃j for the total version of fj = (hj, qj). We write Ãv

for Av computed using the f̃j. The two cases to consider are then the
following.

(CI:↑) ∃τ � σ
(
Ãv({0,...,n−1}\P )(τ) < 2 ∧ dτ

(hn,qn) ↑∗
)
,
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or

(CI:↓) ∀τ � σ
(
Ãv({0,...,n−1}\P )(τ) < 2 → dτ

(hn,qn) ↓∗
)
.

The strategy is then as follows: In case (CI:↑), we search for such
a τ . That is, at stage s, we assume that any computation diverges
if it does not converge within s steps, and we look for the length-
lexicographically first τ which satisfies (CI:↑).

In case (CI:↓), we find a total permutation martingale f̃n which is
equal to (hn, qn) everywhere where the average of the previous martin-
gales is less than 2. This martingale is defined as follows: To compute
f̃n = d̃τ

(h,q)(n) for τ � σ, search for the maximum m ≤ n such that

there is a τ ′ � σ satisfying τ ′ � ran(h � m) = τ � ran(h � m) and

Ãv({0,...,n−1}\P )(τ
′) < 2. Then set d̃τ

(h,q)(n) := dτ ′

(h,q)(m). Note that this

converges by the case assumption (and is equal to dτ
(h,q)(m)).

3.4. The Strategy/Construction. Here we describe the overall strat-
egy, i.e., the construction of our Martin-Löf martingale. We use a
similar idea as before, starting many different substrategies with asso-
ciated capital. If they succeed at stage s, they construct gs+1 from gs

by adding a computable martingale dC to gs. Here C is a clopen set
determined by the strategy, and dC(σ) = 2|σ|µ([σ] ∩ C).

A substrategy will have as its inputs a finite partial function σ : N ⇀
2, n, K, j ∈ N, disjoint finite sets P, T ⊆ {0, . . . , n}, and (t, l) ∈ N×N.
It will be denoted by Strat(σ, n, P, j, (T, K), (t, l)). The interpretation
of these parameters is as follows:

• σ determines the clopen set inside which we will work;
• n denotes the index of the next martingale to be considered;
• P denotes the set of martingales for which earlier strategies

have determined they are partial, and possibly also n, if this
substrategy will work with the assumption (CI:↑);

• if n ∈ P then j indicates the smallest number of computation
steps this strategy believes need to be taken before it believes
divergence;

• if n ∈ T then j indicates after how many computation steps fn

is done betting on σ;
• T is the n-type this strategy will use;
• K is an upper bound for the exceptions to the type T (i.e.,

above K there are no bits with type a proper superset of T );
and

• (t, l) is a pair that is sufficiently out there to compute ÃvT\{n}(σ).
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We will assume that the total versions f̃m, m ∈ T \ {n}, have been

scaled so that Ãv(T\{n})(σ) < 2 (i.e., instead of working with f̃m we

work with λmf̃m with suitably chosen coefficients λm).
The substrategy will also have assigned to it an initial capital I.

It will find an extension τ of σ such that I · µ([σ])/µ([τ ]) > 2n, and
then start all consistent strategies Strat(τ, n + 1, P ′, j′, (T ′, K ′), (t′, l′))
with initial capitals such that the total used initial capital stays strictly
below 1. A consistent strategy here means that P ⊆ P ′ ⊆ {0, . . . , n +
1}, T ⊆ T ′ ⊆ {0, . . . , n + 1}, P ′ ∩ T ′ = ∅, both j′, K ′ greater than
the current stage of the computation, and (t′, l′) as determined for the
computation of AvT (τ).

Now we describe the action of Strat(σ, n, P, j, (T, K), (t, l)) towards
finding τ � σ. This is done in cases:

(1) n ∈ P : find τ ′ as in (CI:↑) believing that any computation that
does not converge in j steps does in fact not converge.

(2) n ∈ T : In this step (and the next) only compute everything for
s steps, where s is the stage of the construction.

Since, by assumption, Ãv(T\{n})(σ) < 2, we can find a co-

efficient cσ,...,(t,l) such that if we use cσ,...,(t,l) · f̃n instead of f̃n

we have that ÃvT (σ) < 2, and in fact using j, we can find

this coefficient effectively. To simplify notation we write f̃n for
cσ,...,(t,l)f̃n, i.e., in our notation we ignore the coefficient.

Find a k > dom(σ) such that k is of type T . In searching
for this, you find (t′, l′) that allows you to do the computation
to check that k is of this type T (that is, l′ is greater than all
bets made, and t′ is how many computation steps it took for
all martingales f̃m, m ∈ T , to bet on bit k. Then with the
input to this strategy, we believe t′′ = max(t, t′, j) is sufficiently

large to compute both ÃvT (σ∪{(k, 0)}) and ÃvT (σ∪{(k, 1)}),
and from t′′ we can compute an appropriate l′′ — i.e., (t′′, l′′) is
sufficiently out there to compute both these AvT .

Then set τ ′ to be σ ∪ {(k, i)} for whichever i ∈ {0, 1} gives
the least value for AvT (σ ∪ {(k, i)}).

(3) n 6∈ T ∪ P : Find a k > dom(σ) such that k is of type T . In
searching for this, you find (t′, l′) that allows you to do the com-
putation to check that k is of this type T . Then with the input
to this strategy, we believe t′′ = max(t, t′) and l′′ = max(l, l′)

is sufficiently out there to compute both ÃvT (σ ∪ {(k, 0)}) and

ÃvT (σ ∪ {(k, 1)}).
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Now, set τ ′ to be σ ∪ {(k, i)} for whichever i ∈ {0, 1} gives
the least value for AvT (σ ∪ {(k, i)}).

Finally, in all cases, extend τ ′ to a long enough τ by iterating the
construction as in step (3).

3.5. Verification. Recursively (but not computably) determine the
sequence

〈(σi, Pi, ji, (Ti, Ki), (ti, li)) | i ∈ N〉
of correct parameters, that is, where all the assumptions as indicated
in the previous section are in fact correct. Then it is clear from the
construction that the martingale constructed in the previous section
succeeds on all reals in S =

⋂
i∈N[σi].

It now remains to show that in S there is an injective random real.

We see by induction that for all i we have that ÃvTi
(σi) < 2, and that

in fact Ãv{0,...,n}(σi) = ÃvTi
(σi).

Suppose that no real in S is injective random. Then O :=
⋃

i∈N{[σ] |
di(σ) > 2

cσi,...,(ti,li)
} is an open cover of S: Let A ∈ S. Then there is an

injective martingale (hi, qi) that wins on A. This means in particular
that there is an n such that dn

i (A) > 2
cσi,...,(ti,li)

+ 2. This in turn means

dk
i (A) > 2

cσi,...,(ti,li)
for all k ≥ n, since di was assumed to be slow-but-

sure. By now choosing m large enough and setting σ = A � m, we get
di(σ) > 2

cσi,...,(ti,li)
.

Since S is compact we can find a finite subcover [ν1], . . . , [νn] of O.

Let b be such that for all i ≤ n, there is a j < b such that d̃j(νi) > 4.
By replacing some νi by νi0 , . . . , νik such that [νi] = ∪j≤k[νij ] we can
assume all νi have the same length and that this length is |σh| for some
h > b. Also, by the last observation of the previous paragraph, we
have that for each a there is a j < b such that dj(νa) > 2

cσj,...,(tj ,lj)
.

This means that either d̃j(νa) > 2 or Ãv0,...,j−1(νa) > 2. Now we
have reached the desired contradiction: On the one hand we know
Av{0,...,b}(σh) ≤ Av{0,...,h}(σh) < 2; on the other we have found an
antichain covering [σh] where on each element in the antichain for some

j ≤ b either some d̃j is greater than 2 or Ãv{0,...,j−1} is greater than 2.

This implies that the average Ãv{0,...,b}(σh) > 2.
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