ON COMPUTABLE SELF-EMBEDDINGS OF
COMPUTABLE LINEAR ORDERINGS

RODNEY G. DOWNEY, BART KASTERMANS, AND STEFFEN LEMPP

ABSTRACT. We solve a longstanding question of Rosenstein, and
make progress toward solving a long-standing open problem in the
area of computable linear orderings by showing that every com-
putable n-like linear ordering without an infinite strongly n-like
interval has a computable copy without nontrivial computable self-
embedding.

The precise characterization of those computable linear order-
ings which have computable copies without nontrivial computable
self-embedding remains open.

1. INTRODUCTION AND MAIN THEOREM

Computability-theoretic aspects of linear orderings have been the
driving force for a number of significant advances in computability
theory and computable model theory as well as advances in reverse
mathematics. Classical illustrations include Feiner’s proof [Fe70] that
there are c.e. linear orderings not isomorphic to computable ones (which
used codings of a complexity hitherto unseen in applied computability
theory), Watnick’s [Wa84] codings into discrete linear orderings which
formed the basis of jump degrees in linear orderings (Ash-Jockusch-
Knight [AJK90]), the Jockusch-Soare [JS91] proof that there are low
linear orderings not isomorphic to computable ones (which introduced
the notion of a separator and demonstrated that a priority argument
could be used to diagonalize against classical isomorphisms), Richter’s
proof [Ri77] that if an order type has a (least) degree then that degree
is 0 (which was a canonical example in the theory of degrees of struc-
tures), Montalbén’s analysis [Mo05, Mo06] of Laver’s Theorem which

2000 Mathematics Subject Classification. Primary 03D45; Secondary 03C57.

Key words and phrases. computable linear ordering, self-embedding.

The first author’s research was supported by The Marsden Fund of New Zealand.
The third author’s research was supported by NSF grant DMS-0555381 and grant
13407 by the John Templeton Foundation under its program “Exploring the
Infinite”. All the authors wish to thank Lempp’s doctoral student Dan Turetsky for
a careful reading and helpful corrections. The second author thanks VU University
Amsterdam for its hospitality during the summer of 2008.

1

2 DOWNEY, KASTERMANS, AND LEMPP

introduced a new set of invariants for linear orderings called signed
trees, and the classical example of the Harrison ordering [Ha68], which
lies at the heart of basically all proofs of analytic completeness. This
list is quite incomplete. We refer the reader to Downey [Do98] and
Rosenstein [Ro82] for assorted results in this area.

The concern of this paper is self-embeddings of computable linear or-
derings. The Dushnik-Miller Theorem [DM41] is a classical result that
states that every countable linear ordering £ = (L, <) has a nontrivial
self-embedding, where a function f : L +— L is called a self-embedding
of L iff f is order-preserving and nontrivial iff it is not the identity.

The Dushnik-Miller Theorem has given rise to many results in com-
putable model theory. It is easy to see that the result is effectively
false in that there is a computable copy of (w, <) with no computable
self-embedding (Hay and Rosenstein, see [Ro82, [Ro84]). Downey and
Moses [DMR9] showed that every discrete linear ordering] has a com-
putable copy with no strongly nontrivial II%-self-embedding., and this
was generalized by Downey, Jockusch and Miller [DJMOG] to classify
the degrees of such self-embeddings in terms of models of Peano Arith-
metic. Related here is the theorem of Downey and Lempp [DL99]
who proved that the Dushnik-Miller Theorem is equivalent to ACAg
over RCAy, a result which is particularly interesting in that the proof
uses a priority argument, but is carried out in the weak system RCA,.

In this paper, we will study a long-standing question in the area. It
is easy to see that if a computable linear ordering £ has an interval of
order type ZTGQ b and b, < n, that is, £ has an interval which looks
like the rationals except that each rational point can be replaced by one
or more but at most n points in a block, then each computable copy
(isomorphic copy of the order that in its own right is computable) has a
nontrivial self-embedding. This embedding can be assembled by fixing
the embedding outside of the interval (which without loss of generality
has endpoints), and then moving everything within the interval by
using the “within n” density there. The longstanding conjecture of
Downey and Moses (see Downey [Do98]) here is that this is the only
way every computable copy has a nontrivial computable self-embedding.

To be more precise, we have the following definitions.

Definition 1.1. Let A = (A, <4) be a linear ordering.

(1) We call two elements ag, a; € A finitely far apart if the interval
between ag and a; is finite (allowing for the case that ag = a;).
(We denote this equivalence relation by ag ~* ay.)

YA discrete linear ordering is one where each element has a successor and a
predecessor, except for the possible first and last elements.

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 3

(2) The condensation of A is the quotient of A by ~* and denoted
by A*. We denote the image of a € A under the quotient map
by a*.

Definition 1.2. Let A = (A,<4) be a linear ordering. Then A is
called

° n-likeﬂ if for any a € A, there are only finitely many elements
in A finitely far apart from a (i.e., if each ~*-equivalence class
is finite, or, equivalently, there are no intervals in A of order-
type w or w*)ﬂ

o strongly n-like if there is a fixed bound N € w such that for
any a € A, there are at most N many elements in A finitely
far apart from a (or, equivalently, there are no intervals in A of
order-type N + 1).

With this, our conjecture becomes:

Conjecture 1.3. Let L be an infinite computable linear ordering which
does not have an infinite strongly n-like interval. Then there is a com-
putable linear ordering B isomorphic to A which has no computable
nontrivial self-embedding.

A few scattered results are known. Showing the depth of the prob-
lem, Downey [Do98] showed that there is a computable linear order-
ing £ such that for any computable linear ordering £ isomorphic to £
via a AY isomorphism, £ has a nontrivial computable self-embedding;
additionally in [Do98§] that there is no uniform method of constructing
a computable L isomorphic to £ with no computable self embedding.
The reason that these results are of interest is that most constructions
in computable model theory are uniform and most can be viewed as a
kind of game. We will be given some structure A and construct a struc-
ture A with A = A via a stage by stage approximation f, : A, — A,,
where these are stage s approximations to A and fl, respectively. Typ-
ically, fs is an isomorphism, and usually it is AY in the sense that
lim; fs(a) exists for each a € dom.A. The game is that the opponent
plays some points into the domain (say) and we respond by playing
points reflecting the stage s diagram into our version of the range. The
hoped for isomorphism is given by keeping it an isomorphism at every

°Here, 1 denotes the order type of the rationals.

3In this paper, we will call an interval of a linear ordering A any convez subset
of A, i.e., any subset S C A such that whenever a,a’ € S then any element
between a and a’ is also in S. So, in particular, under our definition, an interval
need not have endpoints in A.

4 DOWNEY, KASTERMANS, AND LEMPP

stage s. Even in cases where f is not AY, there is usually a stage by
stage isomorphism, such as in Downey [Do93|, where the final mapping
is only AJ.

Ie the present paper, we will verify the conjecture for the class of
n-like linear orderings. This answers a 24-year-old question of Rosen-
stein [Ro84l p. 474].

Main Theorem. Let A be an infinite n-like computable linear ordering
which does not have an infinite strongly n-like interval. Then there is a
computable linear ordering B isomorphic to A which has no computable
nontrivial self-embedding.

While this might seem rather modest progress towards the full ques-
tion, n-like orderings were seen as a very important test case. More-
over, the proof of our theorem has, we feel, significant technical interest,
which we believe will have wide applications elsewhere. The final iso-
morphism is not AY. Additionally, at no stage do we ever have a partial
isomorphism from the domain to the range.

The remainder of this paper is devoted to the proof of our Main
Theorem.

2. INTUITION FOR THE PROOF OF THE MAIN THEOREM

To fix terminology, in an 7n-like linear ordering A, we will call the
maximal finite interval containing an element a € A the mazimal block
of a. More generally, any finite interval in A will be called a block.

The key idea of our proof is similar to the proof technique in Downey;,
Lempp, G. Wu [DLWta], who prove that for any computable linear
ordering with infinitely many successivities, there is a computable iso-
morphic copy in which the successivity relation has degree 0'. The idea
there was not to try to produce a A%-isomorphism by effectively ap-
proximating it by finite partial isomorphisms, but to define finite parts
of a AS-isomorphism along the true path of an infinite-injury priority
argument on a tree of strategies. Adapting this idea to our setup, each
strategy on the tree of strategies tries to map one more maximal block
of elements in A to a maximal block in B of corresponding size.

So let’s fix an infinite 7-like computable linear ordering A = (A, <4)
which does not have an infinite strongly n-like interval. We need to
build a computable linear ordering B = (B, <g) isomorphic to A and
a (non-computable) map ¢ : A — B, meeting, in increasing order of
difficulty, the following four

Requirements:

O: . is order-preserving, i.e., for all a,a’ € A, a <4 d implies

t(a) <p t(a’) (and so in particular ¢ is injective);

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 5

W: ¢ is well-defined (and in particular total);
S: 1 is surjective; and
E: for any computable function f : B — B which is not the iden-
tity, f is not a self-embedding of B.

Since A is n-like, we may without loss of generality (but non-uni-
formly) assume that 4 has neither a least nor a greatest element (since
removing at most finitely many elements from an n-like linear ordering
will always result in a linear ordering without endpoints). (It is prob-
ably possible to remove this non-uniformity, but our assumption of no
endpoints makes our construction easier.)

The isomorphism ¢ will now defined along the true path TP, in the
sense that ¢ is the increasing union of finite partial isomorphisms ¢,
between A and B for ¢ C TP. In the absence of requirements against
computable self-embeddings of B, it is, of course, trivial to build a
computable isomorphic copy B of A, by simply copying all of A into B.
However, we will present here a different way of organizing the construc-
tion of B and the isomorphism ¢, with an eye toward later extending it
to the full construction.

2.1. Making ¢ order-preserving. This is the simplest requirement:
We simply ensure that we don’t make the “silly” mistake to let + map
elements in A to elements in B ordered differently.

2.2. Making ¢ well-defined. Our technique for meeting this require-
ment foreshadows the technique we introduce in the next section. We
ensure that ¢ is well-defined not by ensuring it one element at a time,
but one maximal block at a time. So fix an element a € A for which
t(a) has not yet been defined (say, such an element with least Godel
number). We need to guess the (finite) size of the maximal block in A
containing a. Note that this can be done uniformly in a II3-fashion in
the sense that there is a computable function BS : A xw — w such that
the size of the maximal block containing a is given by liminfy BS(a, s).

Now, at stage s, we simply ensure that there are BS(a, s) many ele-
ments in B to which the maximal block of a can be mapped. Whenever
BS(a, s) increases (and so in particular when we first start working on
the element a), we add more elements to B in order to have a maximal
block in B of sufficient size. Whenever BS(a, s) decreases, we discard
some of the elements in B previously in the ¢-image of the maximal
block of a from the current range of ¢; of course, these elements can’t
be removed from B, but they are now no longer in the range of ¢, and
the strategies making ¢ surjective will worry about supplying preimages
for these elements of B later on.

6 DOWNEY, KASTERMANS, AND LEMPP

2.3. Identifying maximal blocks in A. We interrupt our discussion
to introduce the key idea in how we satisfy the remaining requirements.

The main problem consists in defining the map ¢ while trying to keep
fixed (finite) blocks in B intact (i.e., not inserting additional elements
into them). So suppose we want to keep a block b in B (of length n,
say) intact. For this, we need to identify a maximal block @ in A of
length n’ > n (inside some infinite interval of .4) and then let « map @

to a block b containing b. We will “guess” the block @ in A as follows:
First we guess at a block @ in A of length n, looking for one with least
Godel number, discarding all n-tuples of elements in A if they are not
< 4-ordered correctly or if there is an extra element in A in between.
For each such @, we now guess the length n’ > n of the maximal block
in A containing a, associating with the guess n’ each time an n/-tuple @’
of elements of A which we currently believe to form a maximal block
in A containing a.

The outcomes of a strategy trying to find a preimage (more generally,
inside some infinite interval of A, say) for a block b in B of length n are
thus of the form (@,n’,@’), where @ is a <4-ordered n-tuple from (the
infinite interval of) A, n" > n, and @ is a <4-ordered n/-tuple from A
containing @ as a block. These outcomes are ordered lexicographically,
where the ordering on @ and @ is by Gddel number.

Since no infinite interval of A is strongly 7-like, there are arbitrarily
large finite blocks inside each infinite interval of A. Therefore, each
such strategy, looking for a preimage for b of length n inside some infi-
nite interval of A, is guaranteed the existence of a block of length > n
inside that interval of A. Furthermore, we can organize the guessing for
a “correct” triple (@,n’,@’) (i.e., a triple such that @ is a maximal block
in A) such that this triple is the leftmost outcome guessed infinitely
often. In addition, there will be a stage s’ such that at any later stage,
the only guesses on the outcome will be the “correct” triple (a,n’,a)
and triples of the form (@,n”,@”) (where n” > n'). (This is because if @
is indeed a block in A, then there is a block @ containing @ in A, and
once we have correctly guessed this @ for the first time (where @’ may
equal @ if the latter is already a maximal block), we will from then on
only be wrong by guessing strictly longer tuples @” to be the maximal
block containing a.)

The above basic strategy can easily be modified to ensure the satis-
faction of our remaining requirements, as we will now explain.

2.4. Making ¢ surjective. Such a strategy will in general work within
an interval of B, possibly bordered on one or both sides by maximal
blocks, and within an infinite interval of A, again possibly bordered on

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 7

one or both sides by maximal blocks. Fix an element b (say, the element
with least Goédel number) in some infinite interval of B which is not
currently in the range of .. We now view b as a 1-tuple of elements of B
and apply the strategy from section in order to find preimages not
only for b, but also for all the elements in a maximal block containing b.

2.5. Defeating one self-embedding. The most complicated type of
requirement tries to ensure that no computable function f: B — B is
a self-embedding of B. Let’s look at a single requirement, i.e.; a single
potential self-embedding, first, and fix a partial computable function
f: B — B. If fisindeed a nontrivial self-embedding, then there must
be an element b € B such that

(1) both f(b) and f(f(b)) are defined,;
(2) b, f(b) and f(f(b)) are pairwise distinct; and
(3) either b <p f(b) <p f(f(b)), or F(f(b)) < [(b) <sb.

Without loss of generality, we’ll assume that

b <p f(b) <g f(f(D)),

since the other case is symmetric.

We now defeat f as a self-embedding of B by ensuring that there
are more elements between b and f(b) than between f(b) and f(f(b)),
which clearly prevents f from being a self-embedding. When we find b
as above, the part of B defined so far is still finite, of course; so we will

e declare the interval [f(b), f(f(D))] to be fixed from now on, no
longer allowing any elements to be inserted in the future; and
e insert sufficiently many new elements (if any) to make sure that
already now there are more elements between b and f(b) than

between f(b) and f(f(b)).

We then apply the technique of section [2.3| to the block [f(b), f(f(b))]
(viewed as an n-tuple for some n) in order to find a preimage for each
element in [f(b), f(f(D))].

This strategy thus has two types of outcomes: a finitary outcome,
denoting that no appropriate element b was found, and infinitary out-
comes as outlined in section [2.3] which code the maximal block [b°, b'],
say, containing [f(b), f(f(b))] and which this strategy is trying to pro-
tect in order to defeat f.

There are no constraints on lower-priority strategies assuming the
finitary outcome of the strategy defeating f. Lower-priority strategies
assuming an infinitary outcome are not allowed to insert any elements
into the maximal block [6°, b!], but are free to insert elements anywhere
else in B. This, in effect, means that the strategy for f has partitioned B

8 DOWNEY, KASTERMANS, AND LEMPP

into two infinite intervals (—oo, b) and (b', 0o) (in addition to the finite
interval [0°, b'] which no other strategy is allowed to change).

2.6. Defeating two self-embeddings. There are two possibilities for
a strategy trying to defeat a function f; as a self-embedding of B below
a strategy already having defeated a potential self-embedding fy: If the
former assumes the finitary outcome of the latter, then the strategy
dealing with f; can act as if in isolation since there are no higher-
priority constraints. In the other case, the strategy dealing with the
partial computable function f; : B — B cannot insert any elements
into the interval [0°, b'].

But it is not hard to see that if f; is indeed a nontrivial self-embed-
ding, then there must be an element b; € B such that

(1) both fi(by) and f1(f1(b1)) are defined;

(2) b1, fi(by) and fi(f1(by)) are pairwise distinct;

(3) all of by, f1(b1) and f1(f1(b1)) are either in (—oo, b°), or all of by,
fi(b1) and fi(fi(b1)) are in (b', 00); and

(4) either by <g fi(b1) <g fi(f1(b1)), or fi(fi(b1)) <B fi(b1) <B b1.

We can assume ([3)) above since if f; is indeed a nontrivial self-embedding
of B, moving some element b € B, say, then iterating f; on b sufficiently
many times will give an element b; = f™(b) (for sufficiently large m)

satisfying —.

Without loss of generality, we’ll assume that

by <g fi1(b1) <g f1(f1(b1)) <p b°,

since the other cases are analogous.
The strategy for defeating f; is now the obvious one: We will

e declare the interval [f(by1), fi(f1(b1))] to be fixed from now on,
no longer allowing any elements to be inserted in the future;
and

e insert sufficiently many new elements (if any) to make sure that
already now there are more elements between b; and f;(b;) than
between f1(b1) and f1(f1(b1)).

We then use the technique from section to find preimages for a
maximal block [b),bi] containing the interval [fy(b1), fi1(f1(b1))].

As before, the strategy defeating f; has two types of outcomes, a
finitary outcome, denoting that no element b; as above could be found,
as well as infinitely many infinitary outcomes corresponding to various
guesses about [f1(b1), f1(f1(b1))] and its preimage.

2.7. Defeating several self-embeddings. It should be fairly clear
by now how to deal with several higher-priority strategies defeating

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 9

various potential self-embeddings: A strategy trying to defeat an addi-
tional potential self-embedding given as a partial computable function
f B — B, say, will be faced with B partitioned into finitely many in-
finite intervals I°, ..., I* say (as well as k many maximal blocks which
the strategy is not allowed to change).

For the same reason as in section it f is indeed a nontrivial
self-embedding, then there must be an element b € B such that

(1) both f(b) and f(f(b)) are defined;
(2) b, f(b) and f(f(b)) are pairwise distinct;
(3) all of b, f(b) and f(f(b)) are the same interval I'; and

(4) either b <p f(b) <p f(f(D)), or f(f(b)) <p f(b) <pb.
Once (if ever) b is found, the strategy will

e declare the interval [f(b), f(f(D))] to be fixed from now on, no
longer allowing any elements to be inserted in the future; and
e insert sufficiently many new elements (if any) to make sure that
already now there are more elements between b and f(b) than

between f(b) and f(f(b)).
We then apply the technique of section [2.3|to the block [f(b), f(f(D))]
(viewed as an n-tuple for some n) in order to find a preimage for each

element in [f(b), f(f(D))].

2.8. Dealing with Strategies to the Left of the True Path.
There is one additional small issue which will arise in the full tree
construction and to which we want to alert the reader: When a strat-
egy «, say, wishes to find a preimage for a tuple b of elements of B,
then « will have to respect not only the finitely many finite intervals
given by strategies above «, but also the finitely many finite intervals
given by strategies to the left of a. (If « is on the true path, then
the strategies to its left will only act finitely often and will thus create
only finitely many intervals that o has to deal with.) This is because
strategies to the left of o may after all be correct and cannot afford
to have their work destroyed during stages when they are “dormant”
(i.e., to the left of the current true path).

But since there are only finitely many finite maximal blocks from
above and the left that any strategy has to deal with, the strategies
described above will still work: We simply have to respect more inter-
vals I'. Note that this implies also that an Sy-strategy (for an element b
for which ¢(b) is not yet defined) has to find a preimage not only for its
element b but also for the entire block of elements in which strategies
to the left of the Sy-strategy believe b to be in (i.e., b may be defined
as far as strategies to the left of the Sy-strategy may be concerned).

10 DOWNEY, KASTERMANS, AND LEMPP

3. PROOF OF THE MAIN THEOREM

In the following, we will assume familiarity with priority arguments
on a tree of strategies (cf., e.g., Soare [So87] or Lempp [LeLN]).

3.1. The tree of strategies. The full construction takes place on a
tree of strategies T = A<“ where

A={(@n',@)|0<n<nacA"a € A¥ ,a Ca} U {fin}

is the set of outcomes of a strategy, ordered lexicographically, with fin
as the greatest element, and where the @ and @’ are ordered by Godel
numbers.

We effectively create a list of requirements {R,;};c., such that each
of the following requirements appears in it, for each a € A, b € B, and
each partial computable function f: B — B:

Wa: t(a) is (well-)defined
Sy ¢71(b) is defined
Er: f#idp = f is not a self-embedding of B

All strategies o € T of length i are assigned to requirement R;.

3.2. The full strategies. Each strategy is equipped with a finite par-
tial map ¢, : A — B, which is its current guess about the isomorphism
t: A — B. Naturally, we will want 7 C o € T to imply ¢, C t,; S0 a
strategy o will always have to live with

Ly = Ly

Furthermore, we define, for each strategy o, the set S, of stages at
which o is eligible to act by

Sy ={s|o C TP}

where TP, is our approximation to the true path of the construction at
stage s (to be defined in section [3.3).

Finally, each strategy is also associated with a “block size” function,
approximated by a computable function BS, : A X w — w, which, for
all o along the true path TP, will have the property that

BS,(a) : =liminf,c g, BS,(a,s)

= size of the maximal block in A containing a

(1)

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 11

For this, we define two auxiliary functions, for two consecutive stages s’
and s in S,:

L,(a,s) =|[d’,a]| — 1, where a’ is <4-least such that no element
has entered A in the interval [a', a] since stage s, and
R,(a,s) =|[a,a"]| — 1, where a" is < 4-greatest such that no element

has entered A in the interval [a, a"] since stage s'.

Intuitively, the functions L, and R, guess at the size of the part
of the maximal block containing a to the left and to the right of a,
respectively. Clearly, these two functions will have liminf equal to the
true sizes of the part of the block to the left and right of a, respectively,
but they may not drop to the true liminf at the same stages. We
circumvent this problem by defining

BS,(a,s) = Ly(a,s) + 1+ min{R(a,s') | & < s and s’ € S, and
Vs" € (s',5) NSy (Lo(a,s") > Ly(a, s)) }.

It is now easy to check that this definition of the function BS, en-
sures above for all strategies o along the true path (and indeed for
all strategies o for which S, is infinite).

In the following, we will describe the action of a strategy o € T
depending on the type of requirement it is assigned to. We describe
the action of each type of strategy at a stage s and let s’ be the previous
stage in S, since o’s most recent initialization at which o is not delayed
(as defined at the end of section [3.3). (We set s’ = s if no such stage

exists.)

3.2.1. The full W,-strategy. This strategy o has to ensure that ¢(a) is
defined. If ¢ (a) is already defined, then the strategy simply ends the
substage with outcome fin.

Otherwise, the strategy guesses that the maximal block containing a
also contains the L,(a, s) many elements currently immediately to the
left of a as well as the BS,(a, s) — Ly(a, s) — 1 many elements currently
immediately to the right of a; we’ll denote this tuple of elements in A
by @. The outcome of the strategy is now (a, BS,(a, s),a’) (denoting
that the strategy guesses that the maximal block containing a consists
of the BS,(a, s) many elements in @). Then the strategy defines ¢, (@)
as follows:

o If s’ = s (i.e., if this is the first stage at which o is eligible to act
since its most recent initialization), then create BS,(a, s) many

12 DOWNEY, KASTERMANS, AND LEMPP

new elements b in B and <g-order them consistently with ¢ .
Declare that ¢, (@) = b .

o If & < sand L(a,s') < L,(a, s), then create L,(a,s) — Ly(a,)
many new elements in B immediately to the left of ¢, «(a”),
where (a,n”,a”) was the outcome of o at stage s'.

o If ¥ < sand BS(a,s') — L,(a,s") < BS(a,s) — Ly(a, s), then
create (BS(a, s)—Ly(a, s))—(BS(a, s")—L,(a, s')) many new ele-
ments in B immediately to the right of ¢, ¢ (@”), where (a,n”,@")
was the outcome of o at stage s'.

e Denote by @ the tuple in A consisting of the L,(a,s) many
elements now immediately to the left of a, a itself, as well the
BS,(a,s)— L,(a,s) —1 many elements now immediately to the
right of a, and by b the tuple in B consisting of the L,(a,s)
many elements now immediately to the left of b, b itself, as well
the BS,(a, s) — L,(a, s) — 1 many elements now immediately to

the right of b. Declare that ¢, (@) = b .
The strategy now ends the substage with outcome (a, BS,(a, s),a@).

3.2.2. The full Sy-strategy. This strategy o has to ensure that :=1(b) is
defined. If (¢;)71(b) is already defined, then the strategy simply ends
the substage with outcome fin.

Otherwise, check first whether b is part of a tuple restrained by an
E-strategy 7 <, o. If not, then set b = b. Otherwise, let b be the
shortest tuple of elements in B containing b such that no &-strategy
T <1 o restrains both elements in b and elements outside b. In either
case, we let n be the length of b, and we let a be the element in @ in
the same position as b is in b.

Now the strategy finds the tuple @ € (A — dom(c;))"™ (with least
Godel number) which is < 4-ordered with respect to dom(t;) as b is
<pg-ordered with respect to ran(c;). (If currently no such @ exists,
then the strategy ends the substage with outcome fin; this delay must
be finite if the strategy is on the true path.) Now the strategy guesses
that the maximal block containing @ also contains the L, (a,s) many
elements currently immediately to the left of a as well as the BS,(a, s)—
L,(a, s)—1 many elements currently immediately to the right of a; we’ll
denote this tuple of elements in A by @. The outcome of the strategy
is now (@, BS,(a,s),a’) (denoting that the strategy guesses that the
maximal block containing @ consists of the BS,(a,s) many elements

in @). Then the strategy defines ¢, (a’) as follows:

o If s’ = s (i.e., if this is the first stage at which o is eligible to act
since its most recent initialization), then create BS,(a,s) — 1

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 13

many new elements in B around b and denote by b the new
elements of B together with b (such that a is the mth element

of @ iff b is the mth element of b and such that b forms a block
in B). Declare that ¢,(a@’) = b.

o If & <sand L(a,s') < L,(a, s), then create L,(a,s) — Ly(a,)
many new elements in B immediately to the left of ¢, +(a”),
where (@, n”,a"”) was the outcome of o at stage s'.

o If ¥ < sand BS(a,s') — Ly(a,s’) < BS(a,s) — Ly(a,s), then
create (BS(a, s)—L,(a,s))—(BS(a,s")—L,(a, s')) many new ele-
ments in B immediately to the right of ¢, ¢ (@”), where (a,n”,@")
was the outcome of o at stage s'.

e Denote by @ the tuple in A consisting of the L,(a,s) many
elements now immediately to the left of a, a itself, as well the
BS,(a,s) — Ly(a,s) — 1 many elements now immediately to the
right of a, and by b the tuple in B consisting of the L,(a,s)
many elements now immediately to the left of b, b itself, as well
the BS,(a,s) — Ly(a, s) — 1 many elements now immediately to
the right of b. Declare that ¢,(@’) = b

The strategy now ends the substage with outcome (a, BS,(a, s),a).

3.2.3. The full E¢-strategy. This strategy o has to ensure that f is not
a nontrivial self-embedding of B.

If s = & or if the outcome of the strategy at stage s’ was fin, then
the strategy checks whether there is b € B —ran(:) such that

(1) both f(b) and f(f(b)) are defined,;
(2) b, f(b) and f(f(b)) are pairwise distinct;
E ; cither b < f(0) <5 F(f(8)), or F(f(b)) <5 f(b) <s b; and

there is no element from

ran(e,) U U ran(c,)

7<L0

in [b, f(f(b)] or [f(f()),b], respectively.

If there is no such b, then the strategy simply ends the substage
with outcome fin. Otherwise, by symmetry, assume that b <g f(b) <p
f(f(b)). Denote by b the tuple of elements in [f(b), f(f(b))], letting n
be the size of this interval. Now the strategy

(1) inserts sufficiently many new elements into B3 so that the interval
[b, f(b)] has more than n many elements;

(2) finds an n-tuple of adjacent elements a € (A — dom(s;))"
(with least Godel number) which is < 4-ordered with respect
to dom(¢;) as b is <g-ordered with respect to ran(c,);

14

(3)

(4)

(5)
(6)

DOWNEY, KASTERMANS, AND LEMPP

guesses that the maximal block containing a; (the < 4-least ele-
ment of @) also contains the L, (a1, s) many elements currently
immediately to the left of a; as well as the

min{n — 1, BS,(a1,s) — L,(a1,s) — 1}

many elements currently immediately to the right of a; (we’ll
denote this tuple of elements in A by @, and let n’ be its length);
inserts n’ — n many new elements into B just to the right of
Ff(b) (we'll denote by b the elements of [f(b), f(f(b))] to-
gether with these new elements);

declares that ¢,(a’) = b': and

ends the substage with outcome (@, n’,a@’) (denoting that the
strategy guesses that the maximal block containing @ consists
of the BS, (a1, s) many elements in @').

Otherwise, i.e., if & < s and such b had already been found by
stage ', let (@’,n",@") be the strategy’s outcome at stage s’. The
strategy then

(1)

(2)

finds an n-tuple of adjacent elements @ € (A — dom(c,))"
(with least Gddel number) which is < 4-ordered with respect
to dom(s;) as b is <g-ordered with respect to ran(c);

guesses that the maximal block containing a; (the < 4-least ele-
ment of @) also contains the L, (a1, s) many elements currently
immediately to the left of a; as well as the

min{n — 1, BS,(a1,s) — L,(a1,s) — 1}

many elements currently immediately to the right of a; (we’ll
denote this tuple of elements in A by @, and let n’ be its length);
if & <sand L(ay,s') < L,(a1,), creates L,(a1,s) — L,(a1, ')
many new elements in B immediately to the left of ¢, +(a”),
where (@, n”,@"”) was the outcome of o at stage

if & < s and BS(ay,s) — L,(a1,s") < BS(a1,s) — Ls(as,s),
creates (BS(aq,s) — Ly(a1,s)) — (BS(a1,s") — Ly(a1,s")) many
new elements in B immediately to the right of ¢, ¢ (@”), where
(@,n”,a") was the outcome of o at stage ;

denotes by @ the tuple in A consisting of the L,(ai,s) many
elements now immediately to the left of ay, a; itself, as well
the BS,(a1,s) — Ly(a1,s) — 1 many elements now immediately
to the right of ay, and by b the tuple in B consisting of the
L,(ay,s) many elements now immediately to the left of f(b),
f(b) itself, as well the BS, (a1, s) — L,(a1, s) — 1 many elements
now immediately to the right of f(b);

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 15

(6) declares that ¢, (a’) = b': and

(7) ends the substage with outcome (@,n’,@’) (denoting that the
strategy guesses that the maximal block containing @ consists
of the BS, (a1, s) many elements in @').

3.3. The construction. The construction proceeds in stages s € w,
each subdivided into substages t < s.
At the beginning of stage 0, we initialize all strategies in 7.

Stage s, substage t: At substage t of stage s, the strategy o of length ¢
with the currently correct guess about the outcomes of the strategies
T C o is eligible to act. At the end of each substage t < s, the strategy o
will determine its outcome o and thus the strategy o~ (o) eligible to act
at the next substage. The action of each strategy is determined by the
type of requirement it is assigned to and is as described in section [3.2]

If a strategy o tries to define a block @ which intersects with dom(¢.),
then we call the strategy delayed, and the strategy will take no action
and instead end the substage with outcome fin. (Such a delay must be
finite if the strategy is along the true path.)

Let TP, be the longest strategy eligible to act at stage s. At the end
of each stage, any strategy o > TP; is initialized.

This completes the description of the construction.

3.4. The verification. We verify the satisfaction of all requirements
in a sequence of lemmas, starting with the usual properties of a priority
argument on a tree of strategies.

Lemma 3.1. There is a leftmost path through T of strategies (called
the true path), i.e., we can inductively define an infinite path TP € [T
such that for all m:

(1) TP | m is eligible to act infinitely often; and
(2) any o <p, TP | m is eligible to act at most finitely often.

Proof. We proceed by induction on m. The case m = 0 is trivial; so

suppose that ¢ = TP | m has been defined and satisfies and .
First of all, note that ¢ cannot be delayed at cofinitely many of the

stages at which it is eligible to act. To see this, note that at any stage,

e the domain of ¢ consists of finitely many blocks,

e the finite number k, say, of these blocks eventually stabilizes,
and

e cach of these blocks eventually stabilizes to a maximal block

of A.

16 DOWNEY, KASTERMANS, AND LEMPP

Since A* is n-like without endpoints, the left and right endpoints of
each such maximal block are left and right limit-points, respectively;
so each delay is finite. Furthermore, these maximal blocks break up A
into finitely many infinite intervals I°, ..., I* between these maximal
blocks (as well as all the way to the left and right).

If the outcome of ¢ is fin at cofinitely many stages at which o is
eligible to act, then TP [(m + 1) = o~ (fin) trivially satisfies
and .

Otherwise, starting at the least stage sq, say, after which ¢ is no
longer initialized, ¢ will work with a fixed 1-tuple a (if o is a W-
strategy), or search for a tuple @ in a fixed interval I', say (if o is an
S-strategy), or search for a tuple @ in any interval I* (if o is an &-
strategy). By the fact that A is not strongly n-like, o will eventually
work with a fixed tuple @ of length n, say (which has least Godel
number among the tuples satisfying its search criteria if o is an &- or
S-strategy). This tuple is contained inside A in a maximal block @ of
length n’ > n, say. Fix a stage s; > s at which all elements of @ have
appeared; from then on, ¢ will only have outcome (@,n”,a”) where
n” > n' and @’ D @, and whenever n” = n’ then @’ = @'. Parts
and of the lemma now follow immediately. 0

We note an important fact about outcomes from the paragraph above
in a separate lemma:

Lemma 3.2. If 7 =0 (0) C TP and o = (a,n’,a') then at almost all
stages s € S,, o has outcome (a,n’,a') or an outcome (a,n”,a") where
n” >n" anda” D a. O

We now state some preliminary properties of the map ¢ as con-
structed along the true path.

Lemma 3.3. Let 7 =0 (o) C TP. Then

(1) at all stages at which T is eligible to act, 1o, = 17 C t.; and
(2) limgeg, L, exists and is a finite partial isomorphism from A
into B.

Proof. Part is immediate by the definition of ¢~ and ¢,. Also, at
any o-stage, (, is clearly a finite partial isomorphism (i.e., an order-
preserving map and thus 1-1) from A into B.

By definition, at all stages s € S;, o has its true outcome (namely,
the outcome o with 6™ (o) = 7). So for part (), it only remains to be
shown that limgeg_ ¢, exists. For this, first note that the domain of ¢,
is completely determined by 7 and its guesses about tuples in A.

In order to show that ¢, stabilizes at 7-stages, note that, by induc-
tion, we are done in case o = fin (since then 1 = ¢, at T-stages), and

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 17

if o = (a,n’,a’), we only need to show that ¢,(a’) reaches a limit over
T-stages. But this is immediate from Lemma [3.2| and the description
of the full strategies in section (3.2 0

Lemma implies in particular that ¢ is a well-defined (possibly
partial) order isomorphism from A into B. The next lemma shows
that ¢ is indeed an isomorphism.

Lemma 3.4. The map

is an order isomorphism from A onto B.

Proof. To show totality of ¢, fix a € A. Fix a W,-strategy o C TP and
the tuple @ C A constituting the maximal block (in order, of length n/,
say) containing a. Then ¢ has true outcome (a,n’,@’), and since o
cannot be delayed indefinitely, it will eventually find b € B and will
map @ to b at all but finitely many 7-stages (where 7 = ¢~ ((a,n/,@)).

To show that ¢ is surjective, fix b € B. Fix an Sy-strategy o C TP
(or a strategy o C TP above it already determining the preimage of b
as part of its own strategy). Then o will first choose a preimage a € A,
then the maximal block @ in A of length n/, say, containing a, and then
an image b for @. Then o has true outcome (a,n',a") (for this a € A
and @ € A™) and will map @ to b at all but finitely many 7-stages
(where again 7 = o™ ((a,n/,@’)). O

It is easy to see from our construction that B is indeed a computable
linear ordering, which by Lemma [3.4] is isomorphic to 4. So all we're
left to show is that B does not have any nontrivial computable self-
embedding:

Lemma 3.5. Let f : B — B be a computable map. Then f is not a
nontrivial self-embedding.

Proof. Fix any (total) computable map F': B — B. Fix an £;-strategy
o C TP. As in the proof of Lemma [3.1] we can fix finitely many infinite
intervals 1, ... I* in A such that the domain of 1 consists exactly of
the maximal blocks @; (for 1 < i < k) between these intervals. By
Lemma (3.3, for each i € [1, k], we can fix b; such that at all but finitely
many o-stages, ¢ (@;) = b;. Furthermore, there will be finitely many

tuples b which ¢ has to respect for the sake of strategies to its left.
Now suppose that f is a nontrivial self-embedding of B. Then we
can fix b € B (with least Gédel number) such that b, f(b) and f(f(b))

are pairwise distinct, are all in the same interval I*, and such that there

18 DOWNEY, KASTERMANS, AND LEMPP

is no b between them. By symmetry, we’ll assume that b <p f(b) <g

f(F (D).

But if f were a nontrivial self-embedding, then this would contra-
dict the construction as described in section 3.2.3} If such b could be
found, then o would freeze the interval [f(b), f(f(b))] (making it finite
of size n, say) and insert sufficiently many elements into the interval
b, f(b)] so that it contains more than n many elements. O

REFERENCES

[AJK90] Ash, Christopher J.; Jockusch, Carl G., Jr.; and Knight, Julia F., Jumps
of orderings, Trans. Amer. Math. Soc. 319 (1990), 573-599.

[Do93] Downey, Rodney G., Every recursive Boolean algebra is isomorphic to one
with incomplete atoms, Ann. Pure Appl. Logic 60 (1993), 193-206.

[Do98] Downey, Rodney G., Computability theory and linear orderings, Handbook
of recursive mathematics, Vol. 2, 823-976, North-Holland, Amsterdam, 1998.

[DIMO06] Downey, Rodney G.; Jockusch, Carl G., Jr.; and Miller, Joseph S.,
On self-embeddings of computable linear orderings, Ann. Pure Appl. Logic
138 (2006), 52-76.

[DL99] Downey, Rodney G.; and Lempp, Steffen, The proof-theoretic strength of
the Dushnik-Miller Theorem for countable linear orders, “Recursion theory and
complexity” (Kazan, 1997), 55-57, de Gruyter, Berlin, 1999.

[DLWta] Downey, Rodney G.; Lempp, Steffen and Wu, Guohua, On the complexity
of the successivity relation in computable linear orderings, to appear.

[DM89] Downey, Rodney G. and Moses, Michael F., On choice sets and strongly
nontrivial self-embeddings of recursive linear orders, Z. Math. Logik Grundlag.
Math. 35 (1989), 237-246.

[DM41] Dushnik, Ben and Miller, E. W., Partially ordered sets, Amer. J. of Math.
63 (1941), 600610.

[Fe70] Feiner, Lawrence, Hierarchies of Boolean algebras, J. Symbolic Logic
35 (1970), 365-374.

[Ha68] Harrison, Joseph, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc.
131 (1968), 526-543.

[JS91] Jockusch, Carl G., Jr.; and Soare, Robert 1., Degrees of orderings not iso-
morphic to recursive linear orderings, “International Symposium on Mathe-
matical Logic and its Applications” (Nagoya, 1988), Ann. Pure Appl. Logic
52 (1991), 39-64.

[LeLN] Lempp, Steffen, Lecture Notes on Priority Arguments, preprint available at
http://www.math.wisc.edu/~1lempp/papers/prio.pdfl

[Mo05] Montalbdn, Antonio, Beyond the Arithmetic, Ph.D. Thesis, Cornell Uni-
versity, 2005.

[Mo06] Montalban, Antonio, Countably complementable linear orderings, Order
23 (2006), 321-331.

[Ri77] Richter, Linda Jean C., Degrees of unsolvability of models, Ph.D. Thesis,
University of Illinois at Urbana-Champaign, 1977.

[Ro82] Rosenstein, Joseph G., Linear orderings, Academic Press, New York-
London, 1982.

http://www.math.wisc.edu/~lempp/papers/prio.pdf

COMPUTABLE SELF-EMBEDDINGS OF LINEAR ORDERINGS 19

[Ro84] Rosenstein, Joseph G., Recursive linear orderings, “Orders: description and
roles” (L’Arbresle, 1982), 465-475, North-Holland, Amsterdam, 1984.

[So87] Soare, Robert 1., Recursively enumerable sets and degrees, Springer-Verlag,
Berlin, New York, 1987.

[Wa84] Watnick, Richard, A generalization of Tennenbaum’s theorem on effectively
finite recursive linear orderings, J. Symbolic Logic 49 (1984), 563-569.

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, VICTORIA
UNIVERSITY, WELLINGTON 6140, NEW ZEALAND
E-mail address: Rod.Downey@mcs.vuw.ac.nz

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI
53706-1388
FE-mail address: kasterma@math.wisc.edu

E-mail address: lempp@math.wisc.edu

	1. Introduction and Main Theorem
	2. Intuition for the Proof of the Main Theorem
	2.1. Making the isomorphism order-preserving
	2.2. Making the isomorphism well-defined
	2.3. Identifying maximal blocks in A
	2.4. Making the isomorphism surjective
	2.5. Defeating one self-embedding
	2.6. Defeating two self-embeddings
	2.7. Defeating several self-embeddings
	2.8. Dealing with Strategies to the Left of the True Path

	3. Proof of the Main Theorem
	3.1. The tree of strategies
	3.2. The full strategies
	3.2.1. The full W-strategy
	3.2.2. The full S-strategy
	3.2.3. The full E-strategy

	3.3. The construction
	Stage s, substage t

	3.4. The verification

	References

