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Abstract. A cofinitary group is a subgroup of Sym(N) where all nonidentity

elements have finitely many fixed points. A maximal cofinitary group is a cofinitary

group, maximal with respect to inclusion. We show that a maximal cofinitary group

cannot have infinitely many orbits. We also show, using Martin’s Axiom, that no

further restrictions on the number of orbits can be obtained. We show that Martin’s

Axiom implies there exist locally finite maximal cofinitary groups. Finally we show

that there exists a uniformly computable sequence of permutations generating a

cofinitary group whose isomorphism type is not computable.

§1. Introduction. In this paper we study (maximal) cofinitary groups.
These are subgroups of the full symmetric group on N, and therefore they
have a natural action on N. The structure of (maximal) cofinitary groups
has received a lot of attention (see e.g. Adeleke [A], Truss [T1], Brendle,
Spinas, and Zhang [BSZ], Hrušák, Steprāns, and Zhang [HSZ], etc.). For
a general survey of cofinitary groups see Cameron [C]. Koppelberg [K]
has some constructions of cofinitary groups as well. The results we prove
here were inspired by two results (Theorem 3 and Theorem 4 below) on
maximal cofinitary groups. First we give the definitions.

Definitions 1. (i). Sym(A) is the group of bijections A → A, with
the group operation given by composition. We write Id for the iden-
tity in this group.

(ii). f ∈ Sym(A) is cofinitary iff either it has only finitely many fixed
points, or it is the identity.

(iii). G ≤ Sym(A) is cofinitary iff all g ∈ G are cofinitary.
(iv). G ≤ Sym(A) is a maximal cofinitary group iff G is a cofinitary group

and there does not exist a cofinitary group in which G is properly
contained.

(v). G ≤ Sym(A) acts on A by the action (f, a) 7→ f(a).

The usual setting for these definitions is where A = N, and unless we
make it clear in the context we will always assume that to be the case.
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Some of the interest in cofinitary groups derives from the fact that they
are groups in which all members are eventually different. f, g ∈ NN are
eventually different (almost disjoint) iff

∃k ∈ N ∀l ≥ k f(l) 6= g(l).

To see that a cofinitary group is an eventually different family, let f, g be
members of the group, then fixed points n of g−1f correspond to numbers
n such that f(n) = g(n). That maximal cofinitary groups exist follows
from Zorn’s Lemma: if 〈Gα | α < β〉 is an ⊆-increasing chain of cofinitary
groups, then

⋃
α<β Gα is a cofinitary group that is a ⊆-upper bound for

the chain (being cofinitary is a local property).
Often objects that use the axiom of choice in their existence proof do

not have nice descriptions from a descriptive set theory point of view.
As a relevant example, Mathias [M1] has shown that there is no analytic
maximal almost disjoint family (a maximal almost disjoint family (mad
family) is an infinite A ⊆ P(N) such that for all X,Y ∈ A the intersection
X ∩ Y is finite, and for all infinite X ⊆ N there is a Y ∈ A such that
X∩Y is infinite). Miller [M2] showed an upper bound on the least possible
complexity of maximal almost disjoint families; he showed that under the
axiom of constructibility there exists a coanalytic maximal almost disjoint
family.

Since the definitions of mad families and maximal cofinitary groups are
so closely related, this leads to the question

Question 2. What are the possible complexities of maximal cofinitary
groups?

Using Miller’s method Gao and Zhang proved the following theorem.

Theorem 3 (Gao and Zhang [GZ]). Under the axiom of constructibil-
ity there exists a maximal cofinitary group with a coanalytic generating
set.

We showed that there was enough flexibility in Miller’s method to im-
prove this result to the following theorem.

Theorem 4 (Kastermans [K2]). Under the axiom of constructibility there
exists a coanalytic maximal cofinitary group.

A reasonable question can be how much of an improvement this really
is. First note that if the generating set is coanalytic (Π1

1) then the group
itself is at most Σ1

2. Also Blass (see [GZ]) has observed that if a maximal
cofinitary group G is generated by a Σ1

m set of permutations, then G is
∆1
m.
Motivated by the two theorems above Anatoly Vershik suggested a gen-

eralization of the question of how these two theorems are related. That
is he asked how in general the complexity of a cofinitary group relates to
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the complexity of generating sets for it. Concretely he asked the following
question.

Question 5. Does there exist a uniformly computable sequence of
cofinitary permutations such that the group they generate does not have a
computable isomorphism type (there is no computable group isomorphic
to this group)?

Also Question 2 has now been reduced to the following

Question 6. Does there exist a maximal cofinitary group that is Borel
as a subset of NN?

A relevant observation about the proofs of the results above, and many
earlier constructions of maximal cofinitary groups, is that the construc-
tions always give rise to free groups (this method of construction using
so called good extensions can be seen for instance in Zhang [Z1] and
Zhang [Z2]). The constructions are performed by recursively adding new
generators, and these generators are free over the group that is already
constructed.

Let G ≤ Sym(N), then we say g ∈ Sym(N) \G is free over G iff 〈G, g〉
is isomorphic to G ∗ F (x) by the map f : G ∗ F (x) → 〈G, g〉 that is the
identity on G and maps x to g (here F (x) is the free group with generator
x, and G ∗H denotes the free product of the groups G and H).

It seems to us easily imaginable that the least complexity of maximal
cofinitary groups and the least complexity of freely generated maximal
cofinitary groups are not equal. This leads to the following question

Question 7. What are the possible isomorphism types of maximal
cofinitary groups?

Here we show (see Section 5) the following

Theorem 8. Martin’s axiom implies that there exists a locally finite
maximal cofinitary group.

Related to the isomorphism type of a group is how it can act, or what
its orbit structure is. Here an orbit O ⊆ N is a set on which the action
is transitive and which is closed under the action. This is also related to
Question 6. We show the following two theorems (see Sections 3 and 4,
from [K1])

Theorem 9. A cofinitary group with infinitely many orbits is not max-
imal.

Theorem 10. Martin’s axiom implies that for any n,m ∈ N with n 6= 0
there exists a maximal cofinitary group with n infinite orbits and m finite
orbits.
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These determine the possible sizes and numbers of orbits of the action
on the natural numbers. The following question is still open, where the
diagonal action is defined by (g, (n0, . . . , nk−1)) 7→ (g(n0), . . . , g(nk−1)).

Question 11. Does there exist a maximal cofinitary group that has
infinitely many orbits on Nk (k > 1) under the diagonal action?

If the answer to this question is no, than we get information on Ques-
tion 6. It is still open if maximal cofinitary groups can be closed. A
closed group with only finitely many orbits in Nk for any k ∈ N is called
oligomorphic. Also any closed subgroup of Sym(N) is the isomorphism
group of a countable structure. If the closed group is oligomorphic, then
this countable structure is ℵ0-categorical. Since much is known about
ℵ0-categorical structures, this might help in deciding if closed maximal
cofinitary groups exist.

We then return to Question 5 to show (see Section 6) how changing the
method of construction for maximal cofinitary groups also allows us to
answer it positively. Part of this change in the method was introduced
in Kastermans [K1] to show that from the continuum hypothesis one can
construct a maximal cofinitary group into which every countable group
embeds. In our current context some of the proof simplifies because we
are not extending a given countable group but constructing the whole
group at once.

A construction of a cofinitary group into which every countable group
embeds was already performed by Truss [T1] and Adeleke [A] and further
analysed in Truss [T2]. Those analyses did not include the notions of
good extensions in the context of a group that is not free.

After being told about Theorem 9 Blass observed the following first
restriction (other than size restrictions) on the isomorphism type of max-
imal cofinitary groups.

Theorem 12 (Blass). No Abelian group has an action that is maximal
cofinitary.

Proof. Let G be an Abelian group. Since no countable group has a
maximal cofinitary action we can find 〈ei | i < κ〉, κ ≥ ℵ1 and ei 6= ej for
i 6= j, generating G.

If the action of G is maximal cofinitary it will have an infinite orbit
A ⊆ N. There is some β < κ such that A is already an orbit of the group
generated by {ei | i < β}. Pick a ∈ A. Any ej , j ≥ β, is completely
determined by where it maps a. Since there are only countably many
choices for where to map a there are distinct j, k ≥ β such that ej � A =
ek � A. This contradicts that the action is cofinitary. a
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§2. Basics, notation, and conventions. In this section we establish
some notation and conventions. We also make some very basic observa-
tions. Note again that we will assume throughout that A = N unless
specifically mentioned otherwise.

First we identify function f : A → B with its graph, which means in
particular that (a, b) ∈ f is equivalent to f(a) = b.

For X any set we write F (X) for the free group with generators X, and
if X = {x} we write F (x) for that group.

If G and H are groups, we write G ∗H for their free product.
[A]ω denotes the collection of infinite subsets of A.
If G is a group and X a set, we write WG,X for G∗F (X), and if X = {x}

we write WG for WG,{x}. We identify WG,X with the set of reduced words;
for instance each w(x) ∈ WG is of the form g0x

k0g1x
k1 · · ·xklgl+1 where

gi ∈ G with gi 6= Id for 1 ≤ i ≤ l, and ki ∈ Z \ {0} for all i such that
0 ≤ i ≤ l.

If G ≤ Sym(A), w ∈ WG,X , and ~g = 〈gx | x ∈ X〉 ⊆ Sym(A), then
w(~g) is the image of w under the map f : WG → 〈G,~g〉 defined to be the
identity of G and mapping x to gx for all x ∈ X. Note that for w ∈WG,
w(g) = g0g

k0g1g
k1 · · · gklgl+1 if w(x) = g0x

k0g1x
k1 · · ·xklgl+1 and that

similar statements are true for all WG,X .
For w(x) = g0x

k0g1x
k1 · · ·xklgl+1 ∈WG we define the length lh(w) of w

to be l+1+
∑

i≤l ki. For i ≤ lh(w) we define oc(w, i) to be the i-th symbol
in w counted from the right; e.g. if w(x) = g0x

−2g1, then oc(w, 0) = g1,
oc(w, 1) = x−1, oc(w, 2) = x−1, and oc(w, 3) = g0.

We write f : A ⇀ B for a partial map f from A to B.
If ~f = 〈fx : A ⇀ A | x ∈ X〉, w ∈ WG,X , and n ∈ A we define the

evaluation path of n in w(~f) to be 〈zi | i ≤ j〉 with z0 = n,

zi+1 =


fx(zi) if oc(w, i) = x,

f−1
x (zi) if oc(w, i) = x−1,

oc(w, i)(zi) otherwise (oc(w, i) ∈ G).

and either zj 6∈ dom(fx) (if oc(w, i) = x), zj 6∈ ran(fx) (if oc(w, i) = x−1),
or j = lh(w). We say the evaluation path is total in the second case (i.e.
j = lh(w)), otherwise we call it partial.

Now for ~f and w ∈WG,X , we define w(~f) to be {(n, k) ∈ A×A | there
is an evaluation path ~z for ~f in w of length lh(w) such that z0 = n and
zlh(w) = k}. Note that this corresponds to the definition of w(~g) above in
case ~g is a sequence of permutations.

§3. No maximal cofinitary group has infinitely many orbits.
Here we prove the following theorem.



6 BART KASTERMANS

Theorem 13. A cofinitary group with infinitely many orbits is not
maximal.

Suppose G is a cofinitary group with infinitely many orbits. Fix an
enumeration without repetitions 〈Oi | i ∈ N〉 of all orbits of G. From
these data we define a function h such that h 6∈ G and 〈G, h〉 is cofinitary,
showing G is not maximal. We will first define h, show some of its prop-
erties and finally show how these properties can be used to show that h
is as required.

We define h : N → N by a sequence of finite approximations hs, s ∈
N. Set h0 := ∅, and suppose hs has been defined. Let n := min

(
(N \

dom(hs)) ∪ (N \ ran(hs))
)

and m := minOj , where j is the least number
such that Oj ∩

(
dom(hs) ∪ ran(hs)

)
= ∅. Then set hs+1 := hs ∪ {(n,m)}

if n 6∈ dom(hs) and hs+1 := hs ∪ {(m,n)} otherwise.
Clearly h ∈ Sym(N) \G; we only need to verify that for all w(x) ∈WG

the function w(h) has finitely many fixed points, or is the identity. It
will in fact be the case that all w(h) (except the identity word) have only
finitely many fixed points; showing this will take some work.

First note that for all Oi and Oj there is at most one pair (a, b) ∈ h such
that a ∈ Oi and b ∈ Oj . But in fact much more is true. This much more
is described by the following definition, which also describes the picture
from which this proof developed.

Definition 14. The G-orbits tree of h has vertex set {Oj | j ∈ N}. It
has an edge between Oj and Oi if there is an n ∈ Oj such that h(n) ∈ Oi.

We need to see that this defines a tree. Suppose not, then there is
a cycle On0 , On1 , . . . , Onl

= On0 and for all 0 ≤ i < l vertex Oni is
connected to vertex Oni+1 . This means that for every 0 ≤ i < l there is a
pair (a, b) ∈ h such that a ∈ Oni and b ∈ Oni+1 or a ∈ Oni+1 and b ∈ Oni .
By the observation above these pairs are unique. Let s ∈ N be the least s
such that all pairs 〈a, b〉 used in this cycle are in hs+1. Since s is least with
this property the unique pair 〈a, b〉 ∈ hs+1 \ hs is used in the cycle. Then
〈a, b〉 connects some Onj with one of its neighbors, Onj−1 or Onj+1 . But
each of these is already connected to its other neighbor, so a lies in some
Ok and b lies in some Ol such that both Ok∩ (dom(hs)∪ ran(hs)) 6= ∅ and
Ol ∩ (dom(hs) ∪ ran(hs)) 6= ∅. This however means that the pair (a, b)
does not satisfy the defining criterion for inclusion in hs+1; so we have
the contradiction we were looking for.

The next definition gives us a way to talk about the process of evaluating
a word w(h) on a number n. The orbit path defined here can be looked
at as a walk on the vertices of the G-orbit tree of h.

Definition 15. For m ∈ N, w(x) = g0x
k0g1 · · ·xkl−1gl ∈ WG and h ∈

Sym(N) we define the orbit path of n in w(h) to be the sequence of orbits
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the evaluation passes through — that is ~l = 〈li | 0 ≤ i ≤ lh(w)〉 where
li = j iff zi ∈ Oj with ~z the evaluation path for w on n.

One of the essential features of the function h we have defined is that
for any n ∈ N and w(x) ∈ WG, the evaluation path for n and the orbit
path of n determine each other. This equivalence will be useful as in a
word with infinitely many fixed points the action on the orbits allows us
to conclude that one of the gi in w(x) has infinitely many fixed points
which will be the conclusion, at that time desired.

We are now ready to finish the proof of Theorem 13. Suppose, towards
a contradiction, that there is a w ∈ WG such that w(h) has infinitely
many fixed points. We will show that each fixed point of w(h) gives rise
to a fixed point in some gi appearing in w.

Let n be one of the fixed points of w(h) and ~l its orbit path. Let li ∈ ~l
be such that Oli is the first vertex realizing the maximal distance from
Ol0 in the G-orbit tree of h. The orbit Oli−1

preceding Oli is closer to
Ol0 , so w(i) = x or x−1 (application of any member of G will not change
the orbit we are in) and (w � i)(n) ∈ Oli−1

and (w � i+ 1)(n) ∈ Oli with
((w � i)(n), (w � i+ 1)(n)) ∈ h or ((w � i+ 1)(n), (w � i)(n)) ∈ h.

Assume the former; the other case is analogous.
Since the G-orbit tree of h is a tree, Oli−1

and Oli are connected by
an edge and Oli−1

is strictly closer to Ol0 than Oli , all the other neigh-
bors of Oli are strictly closer to Ol0 than Oli . This means that the
first vertex after Oli different from Oli has to be equal to Oli−1

. But
as ((w � i)(n), (w � i + 1)(n)) is the only pair in h allowing direct pas-
sage between Oli−1

and Oli this means we have to apply h−1 with input
(w � i+ 1)(n) to get back to Oli−1

.
We have the following situation in the orbit path of n:

(w � i)(n) ∈ Oli−1

h→ (w � i+ 1)(n) ∈ Oli → · · ·

→ (w � i+ i)(n) ∈ Oli
h−1

→ (w � i)(n) ∈ Oli−1

Now, in between arriving at Oli and leaving Oli we obviously stay in
the same orbit. This means that between arriving at Oli and leaving
we can only apply members of G. By the shape of w we apply exactly
one member gi of G. And by the work above this member has to fix
(w � i+ 1)(n).

We now know that every fixed point of w(h) gives rise to a fixed point in
some gj appearing in w. There is therefore a j such that infinitely many
fixed points of w(h) give rise to a fixed point in that gj . No two such
fixed points of w(h) can be associated to the same fixed point of gj as for
different points the jth members of their respective evaluation paths are
never equal. (Note that here we strictly speaking need to consider the
pair (gj , j) consisting of the group element together with an indication of
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where it occurs in the word. It is possible that one group element occurs
more than once.) This shows that this gj appearing in w has infinitely
many fixed points, contradicting that it is a member of the cofinitary
group G.

§4. A maximal cofinitary group with finitely many infinite or-
bits. In this section we prove the following theorem.

Theorem 16. Martin’s axiom implies that for every n ∈ N \ {0} and
m ∈ N there exists a maximal cofinitary group with exactly n infinite
orbits and exactly m finite orbits.

We use some machinery from Gao and Zhang [GZ].

Definitions 17. (i). Let p, q : A ⇀ A be finite partial injective func-
tions, and w ∈ WG. Then q is a good extension of p with respect to
w iff p ⊆ q and for every n ∈ N such that w(q)(n) = n there exist
l ∈ N, and u, z ∈WG such that
• w = u−1zu without cancellation,
• z(p)(l) = l, and
• u(q)(n) = l.

Note that if w(p)(n) = n we can choose z = w and u = Id.

With these definitions the following lemmas can be proved as was done
in Gao and Zhang [GZ], or can be derived from the proofs there using a
bijection N→ A.

Lemma 18. Let G ≤ Sym(A) for some A ∈ [N]ω, p : A ⇀ A finite and
injective, and w ∈WG. Then
• (Domain Extension Lemma) For each n ∈ A \ dom(p), for all but

finitely many k ∈ A, the extension p ∪ {(n, k)} is a good extension
of p with respect to w.
• (Range Extension Lemma) For each k ∈ A\ran(p), for all but finitely

many n ∈ A, the extension p∪ {(n, k)} is a good extension of p with
respect to w.

Definition 19. For A ∈ [N]ω and G ≤ Sym(A) a partial function
f : A ⇀ A is hitable with respect to G if
• for all g ∈ G f \ g is infinite, and
• for all w ∈WG either w(f) ∼= Id (w(f) is the identity where defined),

or w(f) has only finitely many fixed points.

Note that for f total and G ≤ Sym(A) a cofinitary group, f being
hitable w.r.t. G means that f ∈ Sym(A)\G and 〈G, f〉 is cofinitary. Also
note that if f is hitable with respect to G and f ′ ⊆ f is infinite, then f ′

is hitable with respect to G as well (to see the first clause, observe that
with the second clause it follows that f ∩ g is finite). Lastly note that if
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an infinite f is not hitable with respect to G then there exists a g ∈ G
such that f ∩ g is infinite; this means that either f ⊆ g or any extension
of f to a total function f̄ has that g−1f̄ has infinitely many fixed points
but is not the identity.

Lemma 20 (Hitting f Lemma). Let A ∈ [N]ω, G ≤ Sym(A) a cofinitary
group, p : A ⇀ A finite injective, and w ∈ WG. If f : A ⇀ A is hitable
with respect to G, then there exists n ∈ dom(f) such that p ∪ {(n, f(n))}
is a good extension of p with respect to w.

The proof of [KZ, Lemma 15] works to show this.
Now we give three applications of Martin’s axiom that will be used

repeatedly in the construction of the maximal cofinitary group. First we
define the poset we use.

Definition 21. Let A ∈ [N]ω and G ≤ Sym(A). Define PG as follows:
• PG = {〈p,W 〉 | p : A ⇀ A finite and injective, and W ⊆WG finite}.
• 〈q,Wq〉 ≤PG

〈p,Wp〉 iff p ⊆ q, Wp ⊆ Wq, and q is a good extension
of p with respect to all words in Wp.

PG fulfils the countable chain condition, as any two elements with iden-
tical first coordinate are compatible.

The Domain Extension Lemma shows that Dn = {〈p,W 〉 ∈ PG | n ∈
dom(p)} is dense for all n ∈ A, and the Range Extension Lemma shows
that Rn = {〈p,W 〉 ∈ PG | n ∈ dom(p)} is dense for all n ∈ A. The set
Ww = {〈p,W 〉 ∈ PG | w ∈W} is also dense for all w ∈WG.

Construction 1: construction of a new element. Let T ∈ [N]ω

and G ≤ Sym(T ) be a cofinitary group such that |G| < c. Then there
exists g ∈ Sym(T ) such that 〈G, g〉 is cofinitary, and 〈G, g〉 ∼= G ∗ 〈g〉 ∼=
G ∗ F (x).

Let G ⊆ PG be a filter such that G ∩ D 6= ∅ for all dense sets D in
{Dn | n ∈ T} ∪ {Rn | n ∈ T} ∪ {Ww | w ∈ WG} (and possibly others).
That such a G exists follows from Martin’s axiom. Then g =

⋃
(p,W )∈G p

is as required: since G is a filter, all finite injective partial functions in it
are compatible, since G ∩Dn 6= ∅ for all n ∈ T the domain is all of T and
since G ∩Rn 6= ∅ for all n ∈ T the range is all of T . To see that 〈G, g〉 is
cofinitary and isomorphic to G ∗F (x) we need to see that for all w ∈WG

the permutation w(g) : T → T has only finitely many fixed points. Let V
be the finite set of all subwords (not necessarily proper) of w. Since Wv is
dense for all v ∈ V there exists 〈p,W 〉 ∈ G such that V ⊆W . Let z be the
shortest subword of w conjugate to w, then w(g) has the same number of
fixed points as z(p) since in the definition of good extension with respect
to w or a conjugate subword we can always choose the conjugate subword
to be z, and then any fixed point in w(g) has to come from a fixed point
of z(p).
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Construction 2: construction of a new element with respect
to to an infinite set. Let T ∈ [N]ω, S ∈ [T ]ω, and G ≤ Sym(T ) be
a cofinitary group such that |G| < c. Then there exists a g ∈ Sym(T )
such that 〈G, g〉 is cofinitary, 〈G, g〉 ∼= G ∗ 〈g〉 ∼= G ∗Z, and g ∩ (S × S) is
infinite.

For this note that Sn = {〈p,W 〉 ∈ PG | ∃k ≥ n k ∈ S∩dom(p) ∧ p(k) ∈
S} is dense for each n ∈ T . This follows since if 〈p,W 〉 ∈ PG, then there
is a k ∈ S \ dom(p) with k ≥ n.. By the Domain Extension Lemma for
all but finitely many m the extension p ∪ {(k,m)} is a good extension of
p with respect to all words in W , therefore there exists such an m that is
a member of S.

Adding these countably many sets to the dense sets in Construction
1, and taking a filter G intersect all these as well gives us the required
element.

Construction 3: construction of a new element with respect
to a hitable function. Let T ∈ [N]ω, G ≤ Sym(T ) cofinitary such that
|G| < c, and f : T ⇀ T hitable with respect to G. Then there exists
g ∈ Sym(T ) such that 〈G, g〉 is cofinitary, 〈G, g〉 ∼= G ∗ 〈g〉 ∼= G ∗ F (x),
and g ∩ f is infinite.

For this note that for each n ∈ T , the set Fn = {〈p,W 〉 ∈ PG | (∃k ≥
n) k ∈ dom(p) ∧ f(k) = p(k)} is dense by the Hitting f Lemma. Adding
these countably many sets to the dense sets in Construction 1, and taking
a filter G which intersects all these gives us the required element.

Construction of the group. Now let n ∈ N \ {0} and m ∈ N be
given. We need to construct a maximal cofinitary group with n infinite
orbits and m finite orbits. Choose a partition of N into

⋃
i<nOi∪

⋃
i<mO

′
i

with Oi ⊆ N all infinite, and O′i ⊆ N all finite.
We are going to construct sequences of generators ~gi = 〈gi,α ∈ Sym(Oi) |

α < c〉, and ~g′i = 〈g′i,α ∈ Sym(O′i) | α < c〉 such that 〈~gi〉 is transitive on
Oi and is freely generated by ~gi, and 〈~g′i〉 is transitive on O′i.

If we have all these sequences constructed up to length α we define Gi,α
to be the group generated by ~gi, G′i,α the group generated by ~g′i, and the
group Gα to be generated by gβ (β < α) where gβ is defined as follows

gβ(x) =

{
gi,β(x), if x ∈ Oi;
g′i,β(x), if x ∈ O′i.

We will construct the sequences so that Gc is a maximal cofinitary group.
For each O′i we choose a permutation gi,0 in Sym(O′i) such that 〈gi,0〉 is

transitive, and set gi,α = gi,0 for all α < c.
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The permutation

h(x) =


x+ 2, if x is even;
0, if x = 1;
x− 2, otherwise.

generates a cofinitary transitive group on N. Conjugating by a bijection
between Oi and N we get a permutation in Sym(Oi) that generates a
transitive and cofinitary group; let gi,0 be that permutation.

Now enumerate Sym(N) by 〈fα | 0 < α < c〉. In our recursive con-
struction at step α we will construct gi,α for all i < n. If 〈fα, Gα〉 is not
cofinitary, construct all gi,α using Construction 1.

Otherwise since fα is a permutation there are i, j < n such that fα ∩
(Oi × Oj) is infinite. Choose such i and j. If i = j, then construct gi,α
using Construction 3 (fα ∩ (Oi ×Oi) is hitable with respect to Gi,α since
〈fα, Gα〉 is cofinitary). For all l 6= i construct gl,α using Construction 1.

If i 6= j first construct gj,α by Construction 2 using the infinite set
ran(fα∩(Oi×Oj)). Then look at the function (fα∩(Oi×Oj))−1gj,α(fα∩
(Oi × Oj)). This is an infinite partial function Oi ⇀ Oi. If it is not
hitable with respect to Gi,α construct gi,α using Construction 1, otherwise
construct it using Construction 3. Construct all gl,α for i 6= l 6= j using
Construction 1.

This completes the construction. We need to check that the group
constructed is as we want it:

All the Oi and O′i are indeed orbits as all elements map elements in one
of these sets to the same set, and the first element of each sequence of
generators generates a group that is transitive on the corresponding set.

It is easy to check by induction that each Gα is cofinitary, and therefore
the group Gc is cofinitary. The only property that remains to be checked
is the maximality. So let f ∈ Sym(N). Then f = fα for some α such that
0 < α < c. If 〈Gc, fα〉 is cofinitary, but fα 6∈ Gc, then the same is true
with respect to Gα. Then in step α we either construct a gi,α such that
gi,α∩fα is infinite, or we construct a gj,α such that f−1

α gj,αfα has generates
an element with infinitely many fixed points when added to Gi,α, or we
construct a gj,α and gi,α such that gi,α ∩ f−1

α gj,αfα is infinite. All three
cases imply that either fα ∈ Gα+1 or 〈fα, Gα+1〉 is not cofinitary, as was
to be shown.

§5. A locally finite maximal cofinitary group. In this section we
prove the following theorem.

Theorem 22. Martin’s axiom implies that there exists a locally finite
maximal cofinitary group.
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So let G be a locally finite cofinitary group such that |G| < c, and let
f ∈ Sym(N) \ G be such that 〈G, f〉 is cofinitary. To prove the theorem
it suffices to find g ∈ Sym(N) such that g ∩ f is infinite, and 〈G, g〉 is a
locally finite cofinitary group.

If H is a group then any action isomorphic to the action of H on itself
is called a regular action. Any action is regular if it is transitive and no
member other than the identity has fixed points. An action is semiregular
if the stabilizer of any point is trivial. So an action is regular if it is
semiregular and transitive.

We first prove the following lemma that provides one of the main in-
gredients of the construction.

Lemma 23. Let
• H ≤ Sym(N) be finite,
• A,B ⊆ N be finite sets such that H acts regularly on B, H acts on
A ∪B, and H acts semiregularly on N \A ∪B,
• f ∈ Sym(A ∪B).

Then there exists finite C ⊆ N \ (A ∪ B) and f̄ ∈ Sym(A ∪ B ∪ C) such
that f ⊆ f̄ , and 〈H � C, f̄ � C〉 acts regularly on C (in particular H acts
semiregularly on C).

Proof. The regular action of 〈H � (A∪B), f〉 consists of copies of the
regular action of H � (A ∪B) (which is the same as the regular action of
H). Write 〈H � (A ∪ B), f〉 =

∐
i∈I Hi where Hi

∼= H (i ∈ I) and I ⊆ N
is finite (

∐
denotes disjoint union). Let C be the union of |I| many orbits

of H all contained in N \ (A ∪ B), and write C =
∐
i∈I Ci where the Ci

are H orbits.
Then choose hi ∈ Hi (i ∈ I) and ci ∈ Ci (i ∈ I). Define a bijection

F :
∐
i∈I Hi →

∐
i∈I Ci by mapping hi 7→ ci and extending this using the

H action: for each g ∈ Hi there is an h ∈ H such that g = hhi. Then
F (g) = hci.

Note that now the action of 〈H,FfF−1〉 is isomorphic to the regular
action of 〈H � (A∪B), f〉. So if we set f̄ = f ∪FfF−1 then f̄ and C are
as required. a

We need the following two lemmas on finite cofinitary groups.

Lemma 24. If H is a finite cofinitary group, then H acts regularly on
all but finitely many of its orbits.

Proof. Suppose H has infinitely many orbits on which it does not
act regularly. Then for each of these orbits there exists an element of
H other than the identity that has a fixed point. Since H is finite this
means that there exists an element of H with infinitely many fixed points
contradicting that it acts cofinitarily. a
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Lemma 25. Let H be a finite cofinitary group, and f ∈ Sym(N) \ H
such that 〈H, f〉 is cofinitary. Then for all but finitely many n ∈ N the
numbers n and f(n) are not in the same H-orbit.

Proof. Suppose that for infinitely many n we have that n and f(n) are
in the same H-orbit. For each such pair (n, f(n)) there exists an element
h of H such that h(n) = f(n). Since H is finite there is an element h
of H that is used for infinitely many n, but this means f ∩ h is infinite.
Since f 6∈ H this is a contradiction with 〈G, f〉 being cofinitary. a

We write ~g ∈ G iff ~g = {g0, . . . , gn} and for all i ≤ n, gi ∈ G, and
{∆~g

i | i ∈ N} for the set of orbits of 〈~g〉.
The poset PG is defined as follows

• (s,~g) ∈ PG iff ~g ∈ G and s : N⇀ N is a finite permutation such that
dom(s) = ran(s) =

∐
i∈I ∆~g

i for I ⊆ N with |I| ≥ 2 and {∆~g
i | i ∈ I}

contains all 〈~g〉 orbits on which the 〈~g〉 action is not regular, and at
least one orbit on which it does act regularly.
• (s1, ~g1) ≤PG

(s0, ~g0) iff s0 ⊆ s1, ~g0 ⊆ ~g1, and the action of 〈s1 �
(dom(s1) \ dom(s0), ~g0 � (dom(s1) \ dom(s0))〉 consists of copies of
the regular action of 〈s1, ~g0 � dom(s1)〉.

Define the following subsets of PG
• Dn = {(s,~g) ∈ PG | n ∈ dom(s)}, for all n ∈ N,
• Rn = {(s,~g) ∈ PG | n ∈ ran(s)}, for all n ∈ N,
• Eg = {(s,~g) ∈ PG | g ∈ ~g}, for all g ∈ G, and
• Hf,n = {(s,~g) ∈ PG | ∃k ≥ n s(k) = f(k)}, for all n ∈ N and
f ∈ Sym(N) \G such that 〈G, f〉 is cofinitary.

We first show that all these sets are dense, and then that this suffices
to show the result.

For all n ∈ N the set Dn is dense in PG: Let (s,~g ∈ PG and suppose
n 6∈ dom(s) (otherwise (s,~g) ∈ Dn and we are done). Write dom(s) =
ran(s) =

∐
i∈I ∆~g

i . The regular action of 〈s,~g � dom(s)〉 consists of some
finite number k copies of the regular action of 〈~g � dom(s)〉 (which is
equal to the regular action of 〈~g〉). Write 〈s,~g � dom(s)〉 =

∐
j<k〈~g〉 the

decomposition of 〈s,~g � dom(s)〉 into copies of the regular action of 〈~g〉.
Choose k elements i0, . . . , ik−1 ∈ N \ I such that n ∈ ∆~g

i0
. Let F :∐

j<k〈~g〉 →
⋃
l<k ∆~g

il
be the bijection respecting the action of ~g (can be

obtained as in the lemma above by choosing a point in each orbit and
extending according to the action).

Then 〈FsF−1, ~g � (
⋃
l<k ∆~g

il
〉 acting on

⋃
l<k ∆~g

il
is a regular action that

is an isomorphic copy of the regular action of 〈s,~g〉. This shows that
(s ∪ FsF−1, ~g) ≤PG

(s,~g). Since n ∈ dom(s ∪ FsF−1) this shows Dn is
dense.
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For all n ∈ N the set Rn is dense in PG: the proof is similar to that for
Dn.

For all g ∈ G the set Eg is dense in PG: Let (s,~g) ∈ PG. Write
dom(s) =

∐
i∈I ∆~g

i . Let I ′ contain all i such that 〈~g, g〉 does not act
regularly on ∆~g,g

i , contain at least one i such that 〈~g, g〉 does act regularly
on ∆~g,g

i , and be such that the Ĩ such that
∐
i∈I′ ∆

~g,g
i =

∐
i∈Ĩ ∆~g

i satisfies
that |Ĩ \ I| is a multiple of the number of copies of the regular 〈~g〉 action
appearing in the regular 〈s,~g〉 action.

Using the strategy from the proof of the density ofDn we can extend s to
s′ so that 〈s′, ~g〉 acts regularly on

∐
i∈I′ ∆

~g,g
i \

∐
j∈I ∆~g

j . Then (s′, ~gg) ≤PG

(s,~g) and (s′, ~gg) ∈ Eg as was to be shown.
For all f ∈ Sym(N) \G such that 〈G, f〉 is cofinitary and n ∈ N, the set

Hf,n is dense in PG:
Let f, n be as given and (s,~g) ∈ PG. Write dom(s) =

∐
i∈I ∆~g

i . Choose
a k ≥ n such that k, f(k) 6∈

∐
i∈I ∆~g

i and k and f(k) are not in the same
orbit. Let i0 be such that k ∈ ∆~g

i0
and ii such that f(k) ∈ ∆~g

i1
. The regular

action of 〈s,~g � dom(s)〉 consists of some finite number m of copies of the
regular action of 〈~g � dom(s)〉. Choose elements i2, . . . , im−1 ∈ N \ I.

Write 〈s,~g � dom(s)〉 =
∐
j<m〈~g〉; the decomposition of 〈s,~g � dom(s)〉

into copies of the regular action of 〈~g〉. Choose dk and df(k) in
∐
j<m〈~g〉

in different copies of 〈~g〉 such that s(dk) = df(k). Then define the bi-
jection F :

∐
j<m〈~g〉 →

∐
m<k ∆~g

im
by F (dk) = k, F (df(k)) = f(k),

choosing arbitrary points in the remaining orbits to map to each other
and extend according to the ~g action. Then (s ∪ FsF−1)(k) = f(k), and
(s ∪ FsF−1), ~g) ≤PG

(s,~g) as was to be shown.
Define (using the f fixed at the beginning of this section) D to be

{Dn | n ∈ N} ∪ {Rn | n ∈ N} ∪ {Eg | g ∈ G} ∪ {Hf,n | n ∈ N}.

This is a collection of fewer than continuum many dense sets, so, using
MA, there exists a filter G ⊆ PG such that G intersects all these dense
sets.

Define g =
⋃

(s,~g)∈G s. Since G intersects all Dn and Rn it follows that
g is a bijection. Since G intersects all Hf,n we see that g ∩ f is infinite.

Now suppose 〈G, g〉 is not cofinitary. Then there exists a w(x) ∈ WG

such that w(g) has infinitely many fixed points, but is not the identity.
Since G intersects Eg for all g ∈ G we can find (s,~g) ∈ G such that ~g
contains all elements of G appearing in w(x). We can also assume there
is a k such that w(s)(k) is defined and is different from k. Then w(s) is
not the identity of 〈s,~g〉 and therefore has no fixed points in the regular
action of 〈s,~g〉. Any extension (s′, ~g′) of (s,~g) extends s so as to give
copies of the regular action of (s,~g), i.e. does not give w(s′) fixed points
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that w(s) does not have. This shows that w(s) and w(g) have the same
finite number of fixed points, contradicting the assumption.

We can see in a similar way that 〈G, g〉 is locally finite: let ~g ∈ G be
finite. Then there exists an s such that (s,~g) ∈ G. For all extensions
(s′, ~g′) of (s,~g) the action of (s′, ~g) outside dom(s) is isomorphic to the
regular action of (s,~g). This shows that (g,~g) is isomorphic to (s,~g) which
is a finite group.

§6. The construction of group generators. In this section we
prove that there exists a uniformly computable sequence 〈gi | i ∈ N〉 of
permutations that generate a cofinitary group whose isomorphism type is
not computable.

For the remainder of this article we will fix an arbitrary A ⊆ N that
is ∆0

2 (A ≤T ∅′) but not computably enumerable. We will construct
〈gn | n ∈ N〉; a uniformly computable sequence of elements of Sym(N)
such that
• G = 〈{gn | n ∈ N}〉, the group generated by {gn | n ∈ N}, is

cofinitary, and
• the following equivalence holds

i ∈ A ⇔ ∃g ∈ G ∃t ∈ N gpf(i,t) = Id,(*)

where f : N × N → N is a computable bijection and pn is the n-th
prime.

This shows that A is c.e. in the isomorphism type of G. So if G had a
computable copy, then A would be computably enumerable, contradicting
our assumption on A.

Notation 26. ~x = 〈xn | n ∈ N〉 is a sequence of variables. Write ~x � s
for (x0, . . . , xs−1). F (~x) is the free group on the generators {xi | i ∈ N}.
F (~x � s) is the free group on the generators {xi | i < s}. For R ⊆ F (~x)
we write R � s for R∩F (~x � s). Fix an enumeration 〈wi | i ∈ N〉 of F (~x).

Definitions 27. (i). We call ~R = 〈Rs ⊆ F (~x) | s ∈ N〉 a demure1

sequence (of relators) iff ~R satisfies requirements R1, R2, and R3.
R1 for all t ∈ N, the set Rs � t is finite.
R2 for all t ∈ N, Rs+1 � t ⊆ Rs � t.

Let Gs = G(~R)s be the group F (~x)/Rs = F (~x)/(RF (~x)
s ), where

R
F (~x)
s is the normal subgroup of F (~x) generated by Rs. Let Ws,Id =

W (~R)s,Id be the set of words in F (~x) representing the identity in Gs.
R3 for all t ∈ N, Ws,Id � t = (Rs � t)F (~x�t).

Note that since Rs � t stabilizes for every t we can define the
group Gω = G(~R)ω as follows: Define Rω := {w ∈ F (~x) | ∀t ∈

1From answers.com: Modest and reserved in manner or behavior.
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N w ∈ F (~x � t) → ∀k ∈ N ∃l ≥ k w ∈ Rl � t} (this set is the union
of all Rs � t for s large enough that the set has stabilized). Then
set Gω := F (~x)/Rω (this group is the inverse limit of the groups
Gs). Note that Gω � t = Gs � t for s large enough (large enough
is so that Rs � t has stabilized). Also note that this means that
if Wω,Id = W (~R)ω,Id is the set of words in F (~x) representing the
identity in Gω, then Wω,Id � t = Ws,Id � t for s large enough.

(ii). For w1, w2 ∈ F (~x) write w1 ∼s w2 iff w1 and w2 represent the same
group element in Gs (this is equivalent to w1w

−1
2 ∈Ws,Id).

(iii). For sequences ~p and ~q of length ω of finite injective functions N→ N
with finite support and w ∈ F (~x), we call ~q an s-good extension of ~p
with respect to w if for all i ∈ N we have pi ⊆ qi and if w(~q)(l) = l
then there are u1, u2, z ∈ F (~x), m ∈ N and z′ ∈ F (~x) such that
(a) u1, u2, and z are subwords of w,
(b) w = u−1

1 zu2 without cancellation,
(c) u1 ∼s u2,
(d) z ∼s z′,
(e) z′(~p)(m) = m, and
(f) u2(~q)(l) = m.

(iv). We call z an s-conjugate subword of w iff there are u1, u2 ∈ F (~x)
such that z, u1, u2, w satisfy (iii)a, (iii)b, and (iii)c above.

(v). We say ~p satisfies Ws,Id iff for all w ∈Ws,Id the partial map w(~p) is
the identity where defined.

With these definitions we can formulate and prove the next lemma.
This lemma shows exactly what we need to achieve in using this method
to construct a group of a given isomorphism type.

Lemma 28. Let ~R be a demure sequence, and let 〈(~p)s | s ∈ N〉 be such
that
• for all s ∈ N (~p)s satisfies Ws,Id,
• for all s ∈ N (~p)s+1 is an s-good extension of (~p)s with respect to all

words in {w0, . . . , ws} and their subwords, and
• for all i ∈ N gi :=

⋃
s∈N(pi)s is a permutation of N.

Then the group generated by 〈gi | i ∈ N〉 is cofinitary and isomorphic to
Gω.

Proof. We need to see that for all w ∈ F (~x), if w ∈ Wω,Id, then
w(~g) = Id, and if w 6∈Wω,Id, then w(~g) has finitely many fixed points.

It is immediate that if w ∈ Wω,Id then w(~g) is the identity, since
w((~p)s) = Id for all s ∈ N.

So let w 6∈ Wω,Id and suppose u is least such that w ∈ F (~x � u). Then
there is a t ∈ N such that w 6∈ Wt,Id. Let Zs be the set of s-conjugate
subwords of w (note that this set does not depend on ~p and ~q). Zs is
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a finite set, and Zs+1 ⊆ Zs. Therefore we can define Z = lims∈N Zs.
By induction we assume that for all z ∈ Z, z(~g) has finitely many fixed
points. This is reasonable since none of these z is in Wω,Id (otherwise w
would be in Wω,Id). Let t′ > t be such that for every z ∈ Z the number
(and therefore the set) of fixed points of z((~p)t′) is the same as z(~g) and
Z = Zt′ .

We will show that the number of fixed points of w(~g) is bounded by the
sum of the number of fixed points of z((~p)t′) for z ∈ Z. Let l be a fixed
point of w(~g) that is not a fixed point of w((~p)t′), and let t′′ be the least
number such that w((~p)t′′)(l) = l.

Then since (~p)t′′ is a (t′′−1)-good extension of (~p)t′′−1 there exist z ∈ Z,
z′, u1, u2 ∈ F (~x) and m ∈ N as in the definition of (t′′−1)-good extension
with respect to w. In particular z′((~p)t′′−1)(m) = m. However since
z ∼t′′ z′ we know z′(~g) = z(~g). This means that z((~p)t′′−1)(m) = m, and
therefore z((~p)t′)(m) = m. This shows that the new fixed point comes
from a fixed point of z((~p)t′), i.e. showing the promised bound. a

Now we need to see that a sequence as in the hypothesis of this lemma
can be built.

In the proof of the previous lemma you can see the trace of an idea.
This idea is to identify what we already know about w(~g) from (~p)s for
some s. Note that this is likely larger than w((~p)s). In fact what we
already know can be described exactly by⋃

w∼sw′

w′((~p)s).

The next definition shows how to extend ~p to ~q such that ~q is everything
we already know about ~p � B ∪ supp(~p).

Definition 29. Given ~p we say ~q is obtained from ~p by (B, s)-applying
relations if

(a, b) ∈ qi ⇔
(
∃w′[xiw′ ∈Ws,Id ∧ w′(~p)(b) = a]

)
∧ (pi 6= ∅ ∨ i ∈ B).

Lemma 30 (Applying Relations Lemma). If ~q is obtained from ~p by
(B, s)-applying relations for some finite B ⊆ N, then
(i). for all i ∈ N, pi ⊆ qi;
(ii). if ~r is obtained from ~q by (B, s)-applying relations, then ~r = ~q;

(iii). if ~p satisfies Ws,Id, then so does ~q;
(iv). ~q has finite support, and for all i ∈ N qi is finite;
(v). ~q is an s-good extension of ~p for any w.

Proof. (i) is immediate since xix−1
i ∈Ws,Id.

For (ii): if xjw ∈ Ws,Id and w(~q)(b) = a, then there exists a w′ such
that xjw′ ∈ Ws,Id and w′(~p)(b) = a. This word is obtained from w as
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follows: for any pair (n0, n1) from qi there is an xiw(n0,n1),i ∈ Ws,Id such
that wi(~p)(n1) = n0. Now replace an occurrence of xi in w by w−1

(n0,n1),i

where (n0, n1) is the pair used in determining the evaluation path of b in
w(~q) at that occurrence.

For (iii): if w ∈ Ws,Id is such that w(~q) � Id, then there is a word w′

such that w′ ∈Ws,Id such that w′(~p) � Id. This w′ is obtained as above.
For (iv): ~q has finite support since its support is contained in the union

of B and the support of ~p. For all i ∈ N qi is finite since it only has pairs
(a, b) in it where a, b ∈

⋃
i∈N (dom(pi) ∪ ran(pi)).

For (v): if w ∈ Ws,Id is such that w(~q)(n) is defined, then there is a
word w′ ∈WG,H such that w′ ∈Ws,Id and w′(~p)(n) is defined and has the
same value. a

The following two lemmas show that we can construct a sequence 〈(~p)s |
s ∈ N〉 as used in Lemma 28.

Lemma 31 (Domain Extension Lemma). If ~p satisfies Ws,Id and i, k
are such that k 6∈ dom(pi), then there exists an s-good extension ~q of
~p such that k ∈ dom(qi) and ~q satisfies Ws,Id.

Lemma 32 (Range Extension Lemma). If ~p satisfies Ws,Id and i, l are
such that 6∈ ran(pi), then there exists an s-good extension ~q of ~p such that
l ∈ ran(qi) and ~q satisfies Ws,Id.

Since the Range Extension Lemma follows from the Domain Extension
Lemma by taking inverses of all words we will only prove the Domain
Extension Lemma.

Proof. Let i ≤ n, k ∈ N and ~p satisfy Ws,Id. First ({i}, s)-apply
relations to ~p to get ~q. If k ∈ dom(qi) we are done by the Applying
Relations Lemma, so suppose this does not happen. Choose an l such
that l > max{{k} ∪

⋃
i∈N (dom(qi) ∪ ran(qi))}.

Let ~r be such that rj = qj for j 6= i and ri = qi ∪ {(k, l)}. We need
to see that ~r satisfies Ws,Id and that ~r is an s-good extension of ~q. We
will first show that ~r satisfies Ws,Id, so suppose that there is a w ∈Ws,Id

such that w(~r) � Id and let w be the shortest such word. Since w(~q) ∼=
Id, this new computation w(~r)(a) 6= a uses the pair (k, l). Since l >
max{

⋃
i∈N (dom(qi) ∪ ran(qi))} this pair has to be used at the beginning

or the end; if it is used in a location in the middle then it needs to be
used again immediately (in the opposite direction). This would mean
w has a subword x−1

i xi or xix−1
i contradicting its minimality. If (k, l)

is used at the beginning and the end then w = xiw
′x−1
i , l = a and

w(~r)(a) = a contrary to the assumption that a is not a fixed point. So
(k, l) is used only once either at the beginning of the word or at the end of
the word. This however contradicts ~q having been obtained by applying
relations; if there is a word w such that w = w′xi and w′(~q)(k) is defined,
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then (k,w′(~q)(k)) ∈ qi (for exact correspondence with the definition of
applying relations consider xi(w′)−1), showing that k was already in the
domain of qi.

To see that ~r is an s-good extension of ~q let w ∈ F (~x) be minimal
such that w(~r)(a) = a and w(~q)(a) ↑. By minimality, as in the previous
paragraph, the pair (k, l) can only be used at the beginning or the end.
Since w(~r)(a) = a if it is used at the beginning or the end, then a = l.
This implies that it also must be used at the end or the beginning, which
implies that w = xiw

′x−1
i and w′(~q)(x−1

i (l)) = x−1
i (l) showing that we

have an s-good extension. a
It is now clear how to construct a sequence of generators 〈gi | i ∈ N〉

generating a given group G. We must find a demure sequence ~R such
that for this sequence we have that Gω satisfies (*) (see page 15). Then
by alternately applying the Domain and Range Extension Lemmas we
construct a sequence 〈(~p)s | s ∈ N〉 satisfying the requirements in Lemma
28 and giving rise to the group we need.

It is clear from the proof of the Domain and Range Extension Lemmas
that if the applying relations operation is computable, then domain and
range extension are computable. Therefore we need to come up with a
demure sequence such that (B, s)-applying relations is computable for
any finite B and s. For this it is sufficient to be able to find the finite
set Rs � t effectively, for all s and t, if ~p and B are given. Let F =
B ∪ supp(~P ). Let t = maxF + 1. Then (F � t) ∩ Rs can be computably
found. Therefore we can effectively apply relations with only the words
in this finite set. We see this is sufficient as follows: since the sequence
is demure Ws,Id � t = (Rs � t)F (~x�t). That is any Ws,Id is obtained from
Rs � t by conjugating by xi with i ≤ t and taking products. It is easy
to see that if xiw0w1 ∈ Ws,Id, w1 ∈ Ws,Id, and wow1(~p)(b) = a, then also
w0(~p(b) = a, and if xiwx−1

i ∈ Ws,Id has wx−1
i (~p)(b) = a then already

xi(~p)(a) = b; showing that is it sufficient to only consider the relators.
We have a set A that is ∆0

2 but not computably enumerable. Since
it is ∆0

2 there exists a function h : N × N → {0, 1} such that ξA(n) =
lims→∞ h(n, s).

Define Rs to be

{xpf(i,t)

f(i,t) | i > t ∨ ∀j(t ≤ j ≤ s→ h(i, j) = 1)},

where f : N×N→ N is a computable bijection. It is easy to see this is a
uniformly computable demure sequence: the computability is clear from
the definition. R1 is satisfied since for every i < t the set Rs � t contains
at most one relator of the form xki where k ∈ Z. R2 is satisfied since
i > t ∨ ∀j(t ≤ j ≤ (s+ 1)→ h(i, j) = 1) implies i > t ∨ ∀j(t ≤ j ≤ s→
h(i, j) = 1). Finally R3 is satisfied since there are no relators relating xi
with xj for i 6= j.
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Then Rω is the set

{xpf(i,t)

f(i,t) | ∀j ≥ t h(i, j) = 1}.

Write E := {(i, t) ∈ N × N | (∀j ≥ t) h(i, j) = 1}. Thus (i, t) ∈ E if
lims→∞ h(n, s) = 1 and h(n, s) has converged before or at stage t. So
n ∈ A iff there is a t such that (n, t) ∈ E, iff there is a t such that
x
pf(n,t)

f(n,t) ∈ Rω, iff there is a generator g for Gω and t ∈ N such that
gpf(n,t) = Id. This is already fairly close to (*), but we need it to be true
not just for the generators but for the whole group. For this note that

Gω ∼= (∗(i,t)∈EZf(i,t)) ∗ (∗i∈NZ),

where G ∗H is the free product of the groups G and H, and ∗i∈NGi the
infinite free product of the groups Gi.

Theorem 33. Each element of a free product is conjugate to a cycli-
cally reduced element.

For this see for instance [LS, Thm. 1.4, Chap IV] (the theorem there is
stated for the free product of two groups, but it easily generalizes to our
current situation).

Now if w ∈ Gω is a cyclically reduced word of length greater than 1,
then clearly w has infinite order. This shows that the only elements of
Gω that have finite order are conjugates of generators, and for those we
had already shown that they have the appropriate orders. This completes
the proof.
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