Cardinal Invariants Related to Permutation
Groups

Bart Kastermans

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, P. R.
China and Department of Mathematics, University of Michigan, Ann Arbor, MI
48109, USA

Yi Zhang

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, P. R.
China

Abstract

We consider the possible cardinalities of the following three cardinal invariants which
are related to the permutation group on the set of natural numbers:

ag := the least cardinal number of maximal cofinitary permutation groups;
a, := the least cardinal number of maximal almost disjoint permutation families;

¢(Sym(N)) := the cofinality of the permutation group on the set of natural num-
bers.

We show that it is consistent with ZFC that a, = a; < ¢(Sym(N)) = Ro; in fact
we show that in the Miller model a, = a; = X; < Xy = ¢(Sym(N)).

1 Introduction

Let Sym(N) be the group of bijections from the natural numbers to the natural numbers.
A permutation g € Sym(N) is cofinitary if and only if g is the identity or has only finitely
many fixed points. A group H < Sym(N) is cofinitary if and only if all its members are
cofinitary. See [C], a survey paper by P. Cameron, for a discussion of different aspects of
cofinitary groups. Since the union of a chain of cofinitary permutation groups is cofinitary,
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Zorn’s Lemma implies that maximal cofinitary groups do exist, and indeed any cofinitary
group is contained in a maximal one. The following theorem was proved by Adeleke [A] and
Truss [T].

Theorem 1 If H < Sym(N) is a mazximal cofinitary group, then H is not countable.
Also, P. Neumann proved the following result (see, e.g. [C, Proposition 10.4]).
Theorem 2 There exists a cofinitary group of cardinality 2]

Thus, P. Cameron (in [C]) asked the following question.

Question 3 If the continuum hypothesis (CH) fails, is it possible that there ezists a maximal
cofinitary group H such that |H| < 2%¥

Here mazimal is with respect to inclusion (a maximal cofinitary group is a cofinitary group
not properly contained in another cofinitary group). In [Z], this question was answered by
proving the following results.

Theorem 4 Martin’s Aziom (MA) implies that, if H < Sym(N) is a mazimal cofinitary
group, then H has cardinality 2]

Theorem 5 Let M = ZFC + —~CH. Let k € M be a cardinal such that X, < k < 28= ).
Then there exists a countable chain condition notion of forcing P such that the following
statements hold in MPF:

(1) 28%=X;
(2) there exists a mazximal cofinitary group H < Sym(N) of cardinality k.

Hence the following cardinal number is non-trivial:

a, := min{|H| : H < Sym(N) is a maximal cofinitary group}

Two permutations f,g € Sym(N) are almost disjoint if and only if | f N g| < Ny, i.e. the set
{neN: f(n) = g(n)} is finite. A family A C Sym(N) is almost disjoint iff every two distinct
members of A are almost disjoint. It is easily seen that G < Sym(N) is cofinitary iff G is
both an almost disjoint set of permutations and a group. We can prove the corresponding
results to Theorem 4 and Theorem 5 for maximal almost disjoint families in Sym(N). S.
Thomas suggested a cardinal invariant as follows (e.g. [Z1] or [Z2]).

a, := min{]A| : A C Sym(N) is a maximal almost disjoint family}

Suppose that H is a group that is not finitely generated. Then H can be expressed as the
union of a chain of proper subgroups. The cofinality of H, written ¢(H ), is defined to be the
least A such that H can be expressed as the union of a chain of A proper subgroups. The
following result was proved by H. D. Macpherson and P. Neumann in [MN].



Theorem 6 If k is an infinite cardinal, then ¢(Sym(k)) > k.

Upon learning of Theorem 6, A. Mekler and S. Thomas independently pointed out the
following easy observation (see, e.g. [ST]).

Theorem 7 Suppose that M | k¥ = k > V. Let P = Fn(k, 2) be the partial order of finite
partial functions from k to 2. Then M® | ¢(Sym(N)) = R; < 20l= g,

Although it can be proved that MA implies ¢(Sym(N)) = 25 (see, e.g. [ST]), some results
indicate that ¢(Sym(N)) is rather small among the cardinal invariants. We give two examples:

(I) If we let 0 be the dominating number (the minimum cardinality of a dominating family
in "N), then we know that:

Theorem 8 ¢(Sym(N)) <.
For a proof of this see [ST].

(IT) A notion of forcing P is Suslin if and only if P is a ¥} subset of R and both <p and Lp
are 21 subsets of R x R, where R denotes the reals. The following result can be proved (see,

e.g. [22]).

Theorem 9 Let M = ZFC + GCH. Let P be a Suslin c.c.c. notion of forcing which adjoins
reals and let Q be the Ry length finite support iteration of P. Then M? = ¢(Sym(N)) = X;.

On the other hand, we can prove in ZFC the following theorem (see, e.g. [BSZ]).

Theorem 10 Non(M) < a,, a,, where Non(M) is the size of the smallest non-meager set
of reals.

As a corollary of Theorems 9 and 10, we know the following.

Corollary 11 [t is consistent with ZFC that ¢(Sym(N)) = R; < a, = a, = 201=R,.

PROOF. Iteratively add Ny random reals with finite support to a ground model M |=
ZFC + GCH.

The obvious question left to answer is whether we can prove ¢(Sym(N)) < a,,a,. In the
second section, we will give a negative answer to this question, namely we will show that it
is consistent with ZFC that a, = a, < ¢(Sym(N)).

In the third section, we will state several open problems in this area.



2 The Theorems

In [MHD], Justin Moore, Michael Hrusdk and Mirna Dzamonja introduced weakenings of
the diamond principle related to cardinal characteristics. We'll first study the effect of one
of these weakenings of the diamond principle on families related to the symmetry group of
the natural numbers.

Definition 12 NN is the Baire space, the space of all functions from the natural numbers,
N, to the natural numbers. == 1is the relation on Baire space of infinite equality, i.e. for

f,9 € "N we have f == g iff {n € N: f(n) = g(n)} is infinite.

A function F : <“12 — NN is a Borel function iff for all § < w; the function F |92 :°2 — NN
s Borel.

O (NN, =) is the following guessing principle:

For every Borel function F : <12 — NN there is a function G : wi — NN such that for every
f:ws — 2 the set

{0 <wi:F(f16)="G()}

18 stationary.
A G related to F in this way is called a (NN, =")-sequence for .
We will study the effect of this ¢-principle on the cardinal invariants a, and a,.

Theorem 13 ("N, =) implies a, = N;.

PROOF. We will define a map F such that the (NN, =*)-sequence for it will help us build
a sequence of permutations (p, : a < §) which will be a maximal almost disjoint family of
permutations of N.

To define F' : <“12 — NN by coding we let its domain be the set of pairs ((p, : @ < 4),p)
with {p, : @ < d} U {p} a family of permutations. This coding works on a club C' C wy,
which is enough. Outside this club we let F' be any constant map. Also by coding we let its
range be N(N U <*(N x N)). We also fix for every § < w; a bijection es : N — 4.

If {po : <} U{p} is not almost disjoint, we define F((p, : a < 9),p)(n) = n. Otherwise,
we define F((pa : o < ), p)(n) to be ((ko, p(ko)), (k1,p(k1)), . -, (kon, p(kgn))) with

e ko the least number such that p(ko) & {pe,;(j)(ko) : 7 < n},
e and k;;q the least number strictly bigger than k; such that p(ki1) € {pe,(j)(kiv1) 1 J < n}.

Since the family is almost disjoint, these k; exist.



For any ¢ < w; the function F restricted to those ((p, : a < §), p) for which {p, : o < §}U{p}
is an almost disjoint family is continuous. Since for fixed ¢ the set of ((p, : a < §),p) for
which {p, : @ < 6} U {p} is an almost disjoint family is a Borel set, this shows that F' is a
Borel function.

Let G : w; — "N be a O(VN, =*)-sequence for this . We define G()(n) to be a valid guess
for (p, : o < 6), a family of almost disjoint permutations, iff

o G(8)(n) = ((ko, 00), (k1,01), -, (Kon, 06n)) for some k;,0; € N,
e all k; are distinct, and
e all o; are distinct and o; & {pe,(jy(k:) 1 j < n}.

Note that for any 0 < wy, n € N, and any permutation almost disjoint from all p,, if
F((pa : a < 6),p)(n) = G(0)(n) then G(0)(n) is a valid guess for (p, : o < 9).

Now we use G to construct (p, : o < w;) recursively. So suppose (p, : @ < d) have been
defined. Then define p; recursively, ps := U, mxps,s Where

(P1) pso =0,

(P2) psi1 = pss if G(0)(s) is not a valid guess for (p, : a < 9),

(P3) pEHl = ps.s U{(ki,0)} if G(6)(s) = ((ko, 00), (k1,01), ..., (kgs, 063)) is a valid guess for
(Pa @ a0 < 6) and 7 is least such that k; € dom(ps,) and o; & ran(ps ),

(P4) pgﬂ,ﬂ = pESH U {(a,b)} where a is the least number not in dom(pgsﬂ) and b is the
least number not in ran(pg,,) and not in {p,;)(a) : j < s}, and

(P5) pss+1 = Pyap U{(c,d)} where d is the least number not in ran(pgy, ;) and ¢ is the least
number not in dom(psl,,;) and not in {pe_;(j)(d) 17 <s}.

Note that |pss| is at most 3s. This means we can do step P3, as the requirement k; ¢ dom(ps s)
excludes at most 3s pairs in G(§)(s), o; € ran(pss) excludes at most another 3s pairs in
G(9)(s), and G(9)(s) has 6s + 1 pairs, always leaving at least one pair.

Now ps is a permutation almost disjoint from all p,, o < . This completes the construction
of (po : v < wy).

It remains to see that this almost disjoint family of permutations is maximal. We do this by
contradiction; suppose, therefore, that there is a permutation p almost disjoint from all p,,
o < wi. Then the set

{§ <wy: F({pa:a<6),p) == G(0)}

is stationary. Remember that we use a coding for the inputs of the function F', and note that,
if this coding is reasonable, the sequence § — ({p, : @ < §),p) determines a path f:w; — 2
in the tree <“12.

Now let § be a member of this set (and the club C, the club where our coding for inputs
works). Then F({p, : a < 0),p) == G(0), which means there are infinitely many n such
that G(6)(n) is a valid guess for (p, : @ < ), and all the pairs in G(0)(n) belong to p. So
we hit p infinitely often with ps, which is a contradiction.



For our next result we will use some results from [GZ] by Su Gao and Yi Zhang (the definitions
of W¢ and good extensions and Lemmas 17 and 18 are theirs).

We start by noting that H < Sym(N) is a cofinitary group if it is a group and all nonidentity
members are almost disjoint from the identity. This is equivalent to H being a group and
an almost disjoint family (g, h € Sym(N) are almost disjoint iff gh™! is almost disjoint from
the identity).

Definition 14 For H C Sym(N) and z a variable, let Wy be the set of words of the form

w=w(z) = goz"g - g,
where g; € H, g; #1d for 0 <i <1, and k; € Z \ {0}.

For w € Wy, we define #.(w) = Y\, |ki|, the number of occurrences of x in w, and
Ih(w) = X' |ki| + 1+ 2, the length of the word. We also define w; to be the it letter in w
counted from the right (if w = gox’gy, then wy = g1, wy = x, we = z, and wy = Wih(w) = Yo)-

For p: N — N a partial function, w(x) € Wy and n € N, we define the evaluation path for
n in w(p) to be the sequence (I; € N :i < j), with ly :==n, l;1+1 = w;(p)(l;) and w;(p)(l;) not
defined or j =1h(w) (if w(p)(l) is defined).

The pairs (1;,l;41) of p are the pairs of p used in this evaluation. For a general function f
(possibly partial) we call (n, f(n)) a pair from f.

For w € Wy and finite one-to-one functions p,q such that p C q we say that q is a good
extension of p with respect to w if the following condition is satisfied:

iof for somel € N
w(p)(l) is undefined and w(q)(l) =1,

then there are subwords u and z of w and n € N such that

w = uzu~" without cancelation,

™ (q)(1) = n, and =(p)(n) = n.

In the same context we call ¢ a very good extension of p with respect to w if w(q) has no
more fized points than w(p).

Note that a very good extension is a good extension.

The usefulness of good extensions comes from the following: Let H be a countable cofinitary
group and (w, : n € N) and enumeration of Wy. Then if g = U, gs with all g, finite
injective functions such that g is a bijection and gs,1 is a good extension of g; with respect
to the words wy, ..., w,, then the group (H,g), the group generated by H and g, is also
cofinitary.

We see this from the following facts:



e For every h € (H, g) there is a w € Wy such that h = w(g).
e For every w € Wy the bijection w(g) is cofinitary.

The first fact is immediate, and the second follows from the fact that w = w, for some s € N.
Then from g5 on we only take good extensions with respect to w. This means that w(g) ends
up with only the fixed points that it is forced to have by what g, is, and of those there are
only finitely many.

The following two lemmas show that we can construct a function F' similar to the F' in the
proof of Theorem 13 but for maximal cofinitary groups.

Lemma 15 Let H be a cofinitary group, f € Sym(N)\ H such that (H, f) is a cofinitary
group and w € Wy. Then for every k € N there exists a finite set S of pairs from [ such
that for every finite injective map p with |p| less than k there exists a pair (a,b) in S such
that pU{(a,b)} is a very good extension of p with respect to w.

PROOF. First we will find an infinite subset fSof f such that w(fY has no fixed points,
then we’ll show that a big enough finite subset of fUexists. The first step ensures that we
don’t have to worry about fixed points caused by pairs from f alone. The second part is
done by counting how many pairs from f“could combine with pairs from p to cause a fixed
point.

Obtaining f“from f is done differently depending on whether w(f) is the identity or not.

If w(f) is not the identity, then it has only finitely many fixed points. Let fbe equal to f
with for each of those finitely many fixed points one pair from f used in the evaluation path
of that fixed point removed. We have ensured that w(fY has no fixed points.

If w(f) is the identity, then we know there is more than one occurrence of x in w(z) (since
f & H). So either there is an occurrence of 2% or 72, or there is a subword of the form
xogx, with ¢; € {—1,+1} and g € H. In either case there are only finitely many evaluation
paths of w(f) that use the same pair from f in both these selected occurrences of x (use
that f has only finitely many fixed points for the first case, and that f ¢ H for the second
case). Remove these finitely many pairs from f to obtain f™

Now we have to find an infinite subset fof f™such that w(fY is nowhere defined (which in
this case is equivalent to not having fixed points).

We do this by wellordering N x N and recursively doing the following: Take the least pair
(a,b) of fTand add it to fX Then remove from f™this pair (a,b) and all finitely many pairs
(actually at most 2) which are used in an evaluation path in one of the selected occurrences
of « where (a, b) is used in the other selected occurrence of x.

We end up with an infinite f"such that w(fY is indeed nowhere defined.



Now we examine for a given p, an injective map with |p| = [ < k, how many pairs (a,b) of
fBcan have that pU {(a,b)} is not a very good extension of p for w.

First there are at most 2/ pairs (a,b) from fSthat have a € dom(p) or b € ran(p). Remove
these from fPto obtain f. Now we look at w(p U f); any fixed point of w(p U f) that was
not a fixed point of w(p) has an evaluation path where both pairs from p and from f are
used. If we remove one pair from f for each of those evaluation paths to obtain f the partial
permutation w(p U f ) will only have fixed points that w(p) already had.

So we only have to find an upper bound for the number of evaluation paths using both pairs
from p and f. This upper bound is attained if for each occurrence of z in w and any pair of p,
it gets to be completed to an evaluation path with all pairs from f. This gives us Ip| - #2(w)
as an upper bound.

So in total at most 21 + [ - #,(w) pairs (a,b) of fSare such that p U {(a,b)} is not a very
good extension of p with respect to w.

This means that if we take S to consist of 2k + k - #,(w) + 1 pairs of fPwe have a set as
desired.

We need and easily get the following stronger lemma.

Lemma 16 Let H be a cofinitary group, f € Sym(N)\ H such that (H, f) is a cofinitary
group and wy, ..., w, € Wy. Then for every k € N there exists a finite set S of pairs from
f such that for every injective map p with |p| less than k there exists a pair (a,b) € S such
that pU{(a,b)} is a very good extension of p for all the words wy, . .., w,.

PROOF. By applying the method used in the first half of the proof of the last lemma n 41
times we can find an infinite f2C f such that none of wo(fY, ..., w,(fY have fixed points.
Then using the method in the second half of the proof of the last lemma also n+ 1 times we
can find how big a subset S of fPwe have to choose.

We use the following two lemmas from [GZ] to make sure the permutation we construct later
will be a bijection (these lemmas give us a method of getting a full domain and full range).
The first lemma allows us to extend the domain of a finite partial injective function by any
number.

Lemma 17 (Domain Extension) Let H be a cofinitary group,wy, . ..,w, € Wy, p a finite
injective function and i ¢ dom(p). Then for all but finitely many m € N the function
pU{(i,m)} is a good extension of p with respect to all words wy,. .., w,.

And the second lemma allows us to extend the range of a finite partial injective function by
any number.



Lemma 18 (Range Extension) Let H be a cofinitary group, wy, ..., w, € Wy, p a finite
injective function and i & ran(p). Then for all but finitely many k € N the function pU{(k,7)}
1 a good extension of p with respect to all words wy, . .., w,.

Now we are ready to state and prove the second theorem.

Theorem 19 ("N, =) implies a, = Ny.

PROOF. We use the same strategy as in the proof of the previous theorem: we define a
function F whose O (YN, =*)-sequence helps us build a maximal cofinitary group ({g, : @ <

wi}).

By coding we let its domain be the set of pairs ((g, : a < ), ¢) with § < w; and {g, : @ <
0} U{g} a family of permutations. This coding works on a club C' C wy, which is enough.
Also by coding we let its range be Y(NU <“(N x N)). We also fix for every § < w; a bijection
es : N — 4.

For (g, : @ < §) a sequence of permutations we let n — w,, be an enumeration of Wiy, .a<s3m

Now we can define F. On the levels 6 < w; where the chosen coding for the input does not
work, define F' to be any constant map. On the levels where the coding does work, define
F({ga : @ < 0, g)(n) to be either m, the least code for ((ko, g(ko)), (k1,g9(k1)), ..., (kn, g(k:N)))
such that for every injective partial map p : N — N with [p| < 3n there is a pair (k;, g(k;))
coded in m such that pU{(k;, g(k;))} is a very good extension of p with respect to all words
W, - - ., Wy, or 0 if such a code does not exist.

Note that by Lemma 16 if {g, : @ < 6} U {g} generates a cofinitary group and g € ({g, :
a < d}) then there is such a code m. Also note that the function F' is Borel.

Let G : w; — "N be a ("N, =)-sequence for this F. We define G(8)(n) to be a valid guess
for (g, : @ < §), a family of permutations that generates a cofinitary group, iff

G(8)(n) = ((ko, 00), (k1,01), ..., (kn, 0n)) for some ki, 0; € N and N € N,

all k; are distinct,

all o; are distinct, and

for every partial injective map p : N — N with [p| < 3n there is a pair (k;, 0;) such that
pU{(ki,0;)} is a very good extension of p with respect to all words o, ..., W,.

Note that for any § < wy, n € N, and any permutation such that g € ({g, : @ < 0}) and
({go : @ < 6} U{g}) is cofinitary, if F({(g,: @ < 9),g)(n) = G(5)(n) then G()(n) is a valid
guess for (g, : a < 6).

Now we use G to recursively construct (g, : @ < wq), a sequence of permutations such that
({ga : @ < 0}) is a maximal cofinitary group. So suppose (g, : & < ) have been constructed.
Then construct g; := U, mys,s recursively by:



(Pl) gso -— ®7

(P2) g5lss1 = gss if G(0)(s) is not a valid guess for (go : v < 0),

(P3) gESH = gs.s U{(ki,00)} if G(0)(s) = ((ko,00),...,(kn,on)) is a valid guess for (g, :
a < 0) and 7 is least such that p U {(k;, 0;)} is a very good extension of p for all words

UN]O) s 7u~)n>
(P4) 9541 = 5s11U{(a, D)} where a is the least number not in dom(gy,, ) and b is the least
number such that gs,,; U {(a,b)} is a good extension of gg,, for all words wy, ..., W,

(this b exists by Lemma 17 (The Domain Extension Lemma)), and

(P5) gs.541 := 51 U{(c,d)} where d is the least number not in ran(gy}, ) and c is the least
number such that g5, U{(c,d)} is a good extension of g}, with respect to all words
Wo, . . . , Wy, (this c exists by Lemma 18 (The Range Extension Lemma)).

Note that |gss| is at most 3s which means we can always perform step P3 when applicable.

Now g5 is a permutation such that {g, : & < 6}U{gs} generates a cofinitary group; completing
the construction of (g, : o < 9).

It remains to see that this group is mazimal cofinitary. We do this by contradiction; suppose,
therefore, that there is a g € Sym(N) such that g & ({9 : @ < wi}) and that ({g, : a <
wi }, g) is a cofinitary group. Then the set

{0 <w: F({ga:a<d),9) =" G(0)}

is stationary. Remember that we use a coding for the inputs of the function F', and note that,
if this coding is reasonable, the sequence § — ({g, : @ < ), g) determines a path f:w; — 2
in the tree <“12. Now let § be a member of this set (and the club C, the club where our
coding for inputs works). Then F({g, : @ < 6), g) =* G(), which means that for infinitely
many n the value G(§)(n) is a valid guess for (g, : @ < 0) and all pairs in G(J)(n) belong to
g. This means we hit ¢ infinitely often with gs, which is a contradiction.

Combining Theorem 13 and Theorem 19 with
Theorem 20 O(NN, =) is true in the Miller model.
which is from [MHD], we see that a, = a, = X; in the Miller model.

Then with g < cof(sym(N)). from [BL], and the fact that the cardinal g is Ny in the Miller
model, from [B] we see, as announced in the introduction, that

Theorem 21 In the Miller model a, = a, = R; < Ry = ¢(Sym(N)).
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3 Questions

We will finish this article with some questions related to the cardinal invariants a, and a,.
For the first question, other than its intrinsic interest, a positive answer would have as likely
consequence many more theorems as proved in this article (consistency of a,, a, less than
other invariants).

Question 22 (Velickovit) Is there a natural cardinal invariant (other than c) that is an
upper bound for a, and a,?

For the second question we know that it is consistent that there exists a maximal cofinitary
group G and an almost disjoint family A such that G C A and |G| < |A|. For this see [Z3].
However the following question is still open.

Question 23 Is it consistent with ZFC that a, and a, are different?

Our third question is about relating cardinal invariant in Baire space to those in Cantor
space. We are especially interested in the relation to

a:=min{|A| : A C P(N) is an infinite maximal almost disjoint family}.
Question 24 Isa < ay,a,?
Jorg Brendle has conjectured a positive answer to this question.

We have noticed that, in all constructions and forcing results so far, both a, and a, are
regular. We are not aware of anything indicating that this should be so. This leads to the
following question.

Question 25 Is it consistent that a, or a, is singular?
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