An Example of a Cofinitary Group in Isabelle/HOL

Bart Kastermans

August 3, 2009

Abstract

We formalize the usual proof that the group generated by the function $k \mapsto k+1$ on the integers gives rise to a cofinitary group.

Contents

1 Introduction 1
2 The Main Notions 3
3 The Function upOne 4
4 The Set of Functions and Normal Forms 5
5 All Elements Cofinitary Bijections. 7
6 Closed under Composition and Inverse 8
7 Move onto the Natural Numbers 11
8 Bijections on \mathbb{N} 15
9 The Conclusion 19
theory CofGroupsimports Mainbegin

1 Introduction

Cofinitary groups have received a lot of attention in Set Theory. I will start by giving some references, that together give a nice view of the area. See also Kastermans [7] for my view of where the study of these groups (other than formalization) is headed. Starting work was done by Adeleke [1], Truss
[12] and [13], and Koppelberg [10]. Cameron [3] is a very nice survey. There is also work on cardinal invariants related to these groups and other almost disjoint families, see e.g. Brendle, Spinas, and Zhang [2], Hrušák, Steprans, and Zhang [5], and Kastermans and Zhang [9]. Then there is also work on constructions and descriptive complexity of these groups, see e.g. Zhang [14], Gao and Zhang [4], and Kastermans [6] and [8].
In this note we work through formalizing a basic example of a cofinitary group. We want to achieve two things by working through this example. First how to formalize some proofs from basic set-theoretic algebra, and secondly, to do some first steps in the study of formalization of this area of set theory. This is related to the work of Paulson andGrạczewski [11] on formalizing set theory, our preference however is towards using Isar resulting in a development more readable for "normal" mathematicians.
A cofinitary group is a subgroup G of the symmetric group on \mathbb{N} (in Isabelle nat) such that all non-identity elements $g \in G$ have finitely many fixed points. A simple example of a cofinitary group is obtained by considering the group G^{\prime} a subgroup of the symmetric group on \mathbb{Z} (in Isabelle int generated by the function upOne : $\mathbb{Z} \rightarrow \mathbb{Z}$ defined by $k \mapsto k+1$. No element in this group other than the identity has a fixed point. Conjugating this group by any bijection $\mathbb{Z} \rightarrow \mathbb{N}$ gives a cofinitary group.

We will develop a workable definition of a cofinitary group (Section 2 and show that the group as described in the previous paragraph is indeed cofinitary (this takes the whole paper, but is all pulled together in Section 9. Note: formalizing the previous paragraph is all that is completed in this note.
Since this note is also written to be read by the proverbial "normal" mathematician we will sometimes remark on notations as used in Isabelle as they related to common notation. We do expect this proverbial mathematician to be somewhat flexible though. He or she will need to be flexible in reading, this is just like reading any other article; part of reading is reconstructing.

We end this introduction with a quick overview of the paper. In Section 2 we define the notion of cofinitary group. In Section 3 we define the function upOne and give some of its basic properties. In Section 4 we define the set Ex1 which is the underlying set of the group generated by upOne, there we also derive a normal form theorem for the elements of this set. In Section 5 we show all elements in Ex1 are cofinitary bijections (cofinitary here is used in the general meaning of having finitely many fixed points). In Section 6 we show this set is closed under composition and inverse, in effect showing that it is a "cofinitary group" (cofinitary group here is in quotes, since we only define it for sets of permutations on the natural numbers). In Section 7 we define a bijection ni-bij from the natural numbers to the integers and show some of its general properties. We also show there the general theorem
that conjugating a permutation by a bijection does the expected thing to the set of fixed points. In Section 8 we define the functino $C O N J$ that is conjugation by ni-bij, show that is acts well with respect to the group operations, use it to define Ex2 which is the underlying set of the cofinitary group we are construction, and show the basic properties of Ex2. Finally in Section 9 we quickly show that all the work in the section before it combines to show that Ex2 is a cofinitary group.

2 The Main Notions

First we define the two main notions.
We write S-inf for the symmetric group on the natural numbers (we do not define this as a group, only as the set of bijections).
definition S-inf $::(n a t \Rightarrow n a t)$ set
where
S-inf $=\{f::($ nat \Rightarrow nat $)$. bij $f\}$
Note here that bijf is the predicate that f is a bijection. This is common notation in Isabelle, a predicate applied to an object. Related to thsi injf means f is injective, and surj f means f is surjective.
The same notation is used for functionn application. Next we define a function Fix, applying it to an object is also written by juxtaposition.

Given any function f we define Fix f to be the set of fixed points for this function.
definition Fix :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} a\right.$ set $)$
where
Fix $f=\{n \cdot f(n)=n\}$
We then define a locale CofinitaryGroup that represents the notion of a cofinitary group. An interpretation is given by giving a set of functions $n a t \rightarrow n a t$ and showing that it satisfies the identities the locale assumes. A locale is a way to collect together some information that can then later be used in a flexible way (we will not make a lot of use of that here).

```
locale CofinitaryGroup \(=\)
    fixes
        dom :: (nat \(\Rightarrow\) nat \()\) set
    assumes
        type-dom : dom \(\subseteq S\)-inf and
        \(i d-c o m: i d \in d o m\) and
        mult-closed \(: f \in \operatorname{dom} \wedge g \in \operatorname{dom} \Longrightarrow f \circ g \in \operatorname{dom}\) and
        inv-closed \(: f \in \operatorname{dom} \Longrightarrow \operatorname{inv} f \in \operatorname{dom}\) and
        cofinitary : \(f \in \operatorname{dom} \wedge f \neq i d \Longrightarrow\) finite (Fix \(f\) )
```


3 The Function upOne

Here we define the function, upOne, translation up by 1 and proof some of its basic properties.
definition upOne :: int \Rightarrow int
where
upOne $n=n+1$
declare upOne-def [simp] - automated tools can use the definition
First we show that this function is a bijection. This is done in the usual two parts; we show it is injective by showing from the assumption that outputs on two numbers are equal that these two numbers are equal. Then we show it is surjective by finding the number that maps to a given number.

```
lemma inj-upOne: inj upOne
by (rule Fun.injI, simp)
lemma surj-upOne: surj upOne
proof (unfold Fun.surj-def, rule)
    fix \(k:\) :int
    show \(\exists m . k=u p\) One \(m\)
        by (rule exI[of \(\lambda l\). \(k=\) upOne \(l k-1]\), simp)
qed
```

theorem bij-upOne: bij upOne
by (unfold bij-def, rule conjI [OF inj-upOne surj-upOne])

Now we show that the set of fixed points of upOne is empty. We show this in two steps, first we show that no number is a fixed point, and then derive from this that the set of fixed points is empty.

```
lemma no-fix-upOne: upOne \(n \neq n\)
proof (rule notI)
    assume upOne \(n=n\)
    with upOne-def have \(n+1=n\) by simp
    thus False by auto
qed
theorem Fix upOne \(=\{ \}\)
proof -
    from Fix-def [of upOne]
    have Fix upOne \(=\{n\). upOne \(n=n\}\) by auto
    with no-fix-upOne have Fix upOne \(=\{n\). False \(\}\) by auto
    with Set.empty-def show Fix upOne \(=\{ \}\) by auto
qed
```

Finally we derive the equation for the inverse of upOne. The rule we use references Hilbert - Choice since the inv operator, the operator that gives an inverse of a function, is defined using Hilbert's choice operator.;

```
lemma inv-upOne-eq: (inv upOne) \((n:: i n t)=n-1\)
proof -
    fix \(n\) :: int
    have ((inv upOne) o upOne) \((n-1)=(\) inv upOne \() ~ n\) by simp
    with inj-upOne and Hilbert-Choice.inv-o-cancel
        show (inv upOne) \(n=n-1\) by auto
qed
```

We can also show this quickly using Hilbert_Choice.inv_f_eq properly instantiated : upOne $(n-1)=n \Longrightarrow$ inv upOne $n=n-1$.

```
lemma (inv upOne) n=n-1
```

by (rule Hilbert-Choice.inv-f-eq[of upOne $n-1$ n, OF inj-upOne], simp)

4 The Set of Functions and Normal Forms

We define the set Ex1 of all powers of upOne and study some of its properties, note that this is the group generated by upOne (in Section 6 we prove it closed under composition and inverse). In Section 5 we show that all its elements are cofinitary and bijections (bijections with finitely many fixed points). Note that this is not a cofinitary group, since our definition requires the group to be a subset of S-inf

```
inductive-set Ex1 :: (int => int) set where
base-func: upOne \in Ex1 |
comp-func: f}\inEx1\Longrightarrow(upOne \circf)\inEx1
comp-inv: f}\inEx1\Longrightarrow((inv upOne)\circf)\inEx
```

We start by showing a normal form for elements in this set.

```
lemma Ex1-Normal-form-part1: \(f \in E x 1 \Longrightarrow \exists k . \forall n . f(n)=n+k\)
proof (rule Ex1.induct [of f], blast)
    - blast takes care of the first goal which is formal noise
    assume \(f \in E x 1\)
    have \(\forall n\). upOne \(n=n+1\) by simp
    with HOL.exI show \(\exists k\). \(\forall n\). upOne \(n=n+k\) by auto
next
    fix \(f a::\) int \(=>\) int
    assume \(f a-k\) : \(\exists k . \forall n\). fa \(n=n+k\)
    thus \(\exists k\). \(\forall n\). (upOne \(\circ f a) n=n+k\) by auto
next
    fix \(f a::\) int \(\Rightarrow\) int
    assume \(f a-k\) : \(\exists k . \forall n\). fa \(n=n+k\)
    from inv-upOne-eq have \(\forall n\). (inv upOne) \(n=n-1\) by auto
    with \(f a-k\) show \(\exists k\). \(\forall n\). (inv upOne \(\circ f a) n=n+k\) by auto
qed
```

Now we'll show the other direction. Then we apply rule int-induct which allows us to do the induction by first showing it true for $k=1$, then showing
that if true for $k=i$ it is also true for $k=i+1$ and finally showing that if true for $k=i$ then it is also true for $k=i-1$.
All proofs are fairly straightforward and use extensionality for functions. In the base case we are just dealing with upOne. In the other cases we define the function ? h which satisfies the induction hypothesis. Then f is obtained from this by adding or subtracting one pointwise.
In this proof we use some pattern matching to save on writing. In the statement of the theorem, we match the theorem against $? P k$ thereby defining the predicate ? P.

```
lemma Ex1-Normal-form-part2:
    \((\forall f .((\forall n . f n=n+k) \longrightarrow f \in E x 1))(\) is ? \(P k)\)
proof (rule int-induct [of ?P 1])
    show \(\forall f .(\forall n . f n=n+1) \longrightarrow f \in E x 1\)
    proof
        fix \(f::\) int \(\Rightarrow\) int
        show \((\forall n . f n=n+1) \longrightarrow f \in E x 1\)
        proof
            assume \(\forall n\). \(f n=n+1\)
            hence \(\forall n\). \(f n=\) upOne \(n\) by auto
            with expand-fun-eq[of \(f\) upOne,THEN sym]
                    have \(f=\) upOne by auto
            with Ex1.base-func show \(f \in E x 1\) by auto
        qed
    qed
next
    fix \(i:\) :int
    assume \(1 \leq i\)
    assume induct-hyp: \(\forall f .(\forall n . f n=n+i) \longrightarrow f \in E x 1\)
    show \(\forall f .(\forall n . f n=n+(i+1)) \longrightarrow f \in E x 1\)
    proof
        fix \(f::\) int \(\Rightarrow\) int
        show \((\forall n . f n=n+(i+1)) \longrightarrow f \in E x 1\)
        proof
            assume \(f\)-eq: \(\forall n\). \(f n=n+(i+1)\)
            let \(? h=\lambda n . n+i\)
            from induct-hyp have \(h\)-Ex1: ? \(h \in E x 1\) by auto
            from \(f\)-eq have \(\forall n\). \(f n=\) upOne (?h \(n\) ) by (unfold upOne-def,auto)
            hence \(\forall n\). \(f n=(\) upOne \(\circ\) ? \(h) n\) by auto
            with expand-fun-eq[THEN sym, of \(f\) upOne ○?h]
                    have \(f=\) upOne \(\circ\) ? \(h\) by auto
                with \(h\)-Ex1 and Ex1.comp-func [of ?h] show \(f \in E x 1\) by auto
            qed
    qed
next
    fix \(i:\) :int
    assume \(i \leq 1\)
    assume induct-hyp: \(\forall f .(\forall n . f n=n+i) \longrightarrow f \in E x 1\)
```

```
show \(\forall f .(\forall n . f n=n+(i-1)) \longrightarrow f \in E x 1\)
proof
    fix \(f:\) : int \(\Rightarrow\) int
    show \((\forall n . f n=n+(i-1)) \longrightarrow f \in E x 1\)
    proof
        assume \(f\)-eq: \(\forall n\). \(f n=n+(i-1)\)
        let \(? h=\lambda n . n+i\)
        from induct-hyp have \(h\)-Ex1: ? \(h \in E x 1\) by auto
        from inv-upOne-eq and \(f\)-eq
            have \(\forall n\). \(f n=(\) inv upOne \()(? h n)\) by auto
        hence \(\forall n\). \(f n=(\) inv upOne \(\circ\) ? \(h) n\) by auto
        with expand-fun-eq[THEN sym, of f inv upOne \(\circ\) ?h]
            have \(f=\) inv upOne \(\circ\) ? \(h\) by auto
        with \(h\)-Ex1 and Ex1.comp-inv[of ?h] show \(f \in E x 1\) by auto
    qed
qed
qed
```

Combining the two directions we get the normal form theorem.

```
theorem Ex1-Normal-form: (f\inEx1) =( }\existsk.\foralln.f(n)=n+k
proof
    assume f}\inEx
    with Ex1-Normal-form-part1 [of f]
        show ( }\existsk.\foralln.f(n)=n+k) by aut
next
    assume }\existsk.\foralln.f(n)=n+
    with Ex1-Normal-form-part2
        show f}\inEx1\mathrm{ by auto
qed
```


5 All Elements Cofinitary Bijections.

We now show all elements in CofGroups.Ex1 are bijections, Theorem all-bij, and have no fixed points, Theorem no-fixed-pt.
theorem all-bij: $f \in E x 1 \Longrightarrow$ bij f
proof (unfold bij-def)
assume $f \in E x 1$
with Ex1-Normal-form
obtain k where f-eq: $\forall n$. $f n=n+k$ by auto

```
show \(\operatorname{inj} f \wedge \operatorname{surj} f\)
proof (rule conjI)
show INJ: inj \(f\)
proof (rule injI)
            fix \(n m\)
            assume \(f n=f m\)
            with \(f\)-eq have \(n+k=m+k\) by auto
            thus \(n=m\) by auto
```

```
        qed
    next
        show SURJ: surj f
        proof (unfold Fun.surj-def, rule allI)
            fix n
            from f}f\mathrm{ -eq have n=f(n-k) by auto
            thus }\existsm.n=fm\mathrm{ by (rule exI)
        qed
    qed
qed
theorem no-fixed-pt:
    assumes f-Ex1:f\inEx1
    and f-not-id: f}\not=i
    shows Fix f}={
proof -
    - we start by proving an easy general fact
    have f-eq-then-id: ( }\foralln.f(n)=n)\Longrightarrowf=i
    proof -
    assume f-prop: }\foralln.f(n)=
    have (fx=id x) = (fx=x) by simp
    hence }(\forallx.(fx=idx))=(\forallx.(fx=x)) by sim
    with expand-fun-eq[THEN sym, of fid] and f-prop show }f=id\mathrm{ by auto
    qed
    from f-Ex1 and Ex1-Normal-form have \existsk.\foralln.f(n)=n+k by auto
    then obtain k where k-prop: }\foralln.f(n)=n+k.
    hence }k=0\Longrightarrow\foralln.f(n)=n by aut
    with f-eq-then-id and f}f\mathrm{ -not-id have }k\not=0\mathrm{ by auto
    with }k\mathrm{ -prop have }\foralln.f(n)\not=n\mathrm{ by auto
    moreover
    from Fix-def[of f] have Fix f ={n.f(n)=n} by auto
    ultimately have Fix f}={n\mathrm{ . False } by auto
    with Set.empty-def show Fix f={} by auto
qed
```


6 Closed under Composition and Inverse

We start by showing that this set is closed under composition. These facts can later be conjugated to easily obtain the corresponding results for the group on the natural numbers.

```
theorem closed-comp: \(f \in E x 1 \wedge g \in E x 1 \Longrightarrow f \circ g \in E x 1\)
proof (rule Ex1.induct [of f], blast)
    assume \(f \in E x 1 \wedge g \in E x 1\)
    with Ex1.comp-func[of \(g\) ] show upOne \(\circ g \in\) Ex1 by auto
next
    fix \(f a\)
    assume \(f a \circ g \in E x 1\)
```

```
    with Ex1.comp-func [of fa\circg]
    and Fun.o-assoc [of upOne fa g]
    show upOne \circfa\circg\inEx1 by auto
next
    fix fa
    assume fa\circg E Ex1
    with Ex1.comp-inv [of fa\circg]
    and Fun.o-assoc [of inv upOne fa g]
    show (inv upOne) \circfa\circg\inEx1 by auto
qed
```

Now we show the set is closed under inverses. This is done by an induction on the definition of CofGroups.Ex1 only using the normal form theorem and rewriting of expressions.

```
theorem closed-inv: \(f \in E x 1 \Longrightarrow \operatorname{inv} f \in E x 1\)
proof (rule Ex1.induct [of f], blast)
    assume \(f \in E x 1\)
    show inv upOne \(\in\) Ex1 (is ?right \(\in\) Ex1)
    proof -
        let ?left \(=\) inv upOne \(\circ(\) inv upOne \(\circ\) upOne \()\)
        \{
            from Ex1.comp-inv and Ex1.base-func have ?left \(\in\) Ex1 by auto
        \}
        moreover
        \{
            from bij-upOne and bij-is-inj have inj upOne by auto
            hence inv upOne o upOne \(=i d\) by auto
            hence ?left = ? right by auto
    \}
    ultimately
    show ?thesis by auto
    qed
next
    fix \(f\)
    assume \(f\)-Ex1: \(f \in E x 1\)
    from \(f\)-Ex1 and Ex1-Normal-form
    obtain \(k\) where \(f\)-eq: \(\forall n\). \(f n=n+k\) by auto
    show inv (upOne \(\circ f) \in E x 1\)
    proof -
        let ?ic \(=i n v(u p O n e \circ f)\)
        let ?ci \(=\operatorname{inv} f \circ\) inv upOne
        \{
            - first we get an expression for inv \(f \circ\) inv upOne
        \{
            from all-bij and \(f\)-Ex1 have bij \(f\) by auto
            with bij-is-inj have inj-f: inj \(f\) by auto
            have \(\forall n\). inv \(f n=n-k\)
            proof
```

```
            fix n
            from f-eq have f(n-k)=n by auto
            with inv-f-eq[of f n-k n] and inj-f
            show invf n=n-k by auto
            qed
            with inv-upOne-eq
            have }\foralln\mathrm{ . ?ci n = n-k-1 by auto
            hence }\foralln\mathrm{ . ?ci }n=n+(-1-k)\mathrm{ by arith
        }
        moreover
        - then we check that this implies invf\circ inv upOne is
        - a member of CofGroups.Ex1
        {
            from Ex1-Normal-form-part2[of -1 - k]
            have (\forallf.((\foralln.fn=n+(-1 - k)) \longrightarrowf\inEx1)) by auto
        }
        ultimately
        have ?ci\inEx1 by auto
    }
    moreover
    {
        from f-Ex1 all-bij have bij f by auto
        with bij-upOne and o-inv-distrib[THEN sym]
        have ?ci = ?ic by auto
    }
    ultimately show ?thesis by auto
    qed
next
fix f
assume f-Ex1:f\inEx1
with Ex1-Normal-form
    obtain k where f-eq: }\foralln.fn=n+k\mathrm{ by auto
show inv (inv upOne \circf)\inEx1
proof -
    let ?ic = inv (inv upOne \circf)
    let ?c = invf\circupOne
    {
        from all-bij and f-Ex1 have bij f by auto
        with bij-is-inj have inj-f: inj f by auto
        have }\foralln.\operatorname{inv}fn=n-
        proof
            fix n
            from f-eq have f(n-k)=n by auto
            with inv-f-eq[of f n-k n] and inj-f
            show inv f n = n-k by auto
            qed
            with upOne-def
            have }\foralln.(invf\circupOne) n=n-k+1 by aut
```

```
    hence }\foralln.(invf\circupOne) n=n+(1-k) by arith
    moreover
    from Ex1-Normal-form-part2[of 1-k]
    have }(\forallf.((\foralln.fn=n+(1-k))\longrightarrowf\inEx1)) by aut
    ultimately
    have ?c \in Ex1 by auto
    }
    moreover
    {
        from f-Ex1 all-bij and bij-is-inj have bij f by auto
        moreover
        from bij-upOne and bij-imp-bij-inv have bij (inv upOne) by auto
        moreover
        note o-inv-distrib[THEN sym]
        ultimately
        have inv f\circinv(inv upOne)=inv(inv upOne \circf) by auto
        moreover
        from bij-upOne and inv-inv-eq
            have inv (inv upOne) = upOne by auto
        ultimately
        have ?c = ?ic by auto
    }
    ultimately
    show ?thesis by auto
    qed
qed
```


7 Move onto the Natural Numbers

We define a bijection from the natural numbers to the integers. This will be used to coerce the functions above to be on the natural numbers.
definition ni-bij:: nat \Rightarrow int

where

$$
\begin{aligned}
\text { ni-bij } n= & (\text { if }((n \bmod (2))=0) \\
& \text { then int }(n \text { div 2) } \\
& \text { else }-\operatorname{int}(n \text { div 2) }-1)
\end{aligned}
$$

declare ni-bij-def [simp] - automated tools can use the definition
Under this bijection the even natural numbers map to the positive integers, e.g. ni-bij 0 is 0 , ni-bij 4 is 2 . The odd natural numbers map to the negative integers, e.g. ni-bij 1 is -1 , and ni-bij 3 is -3 .

We prove a couple of simple facts on modular arithmetic that we'll use to prove properties of $n i$-bij.
lemma mod-cases: $(n:: n a t) \bmod 2=1 \vee n \bmod 2=0$ by arith
lemma mod-neg: $n \bmod 2=1 \Longrightarrow$ ni-bij $n<0$

```
proof -
    assume n mod 2 = 1
    with ni-bij-def
        have eq: ni-bij n = -int ( }n\mathrm{ div 2) - 1 by auto
    moreover
    have -int (n div 2) - 1 < 0 by arith
    ultimately
    show ni-bij n<0 by auto
qed
lemma mod-pos: n mod 2 = 0 m ni-bij n \geq0
proof -
    assume n mod 2 = 0
    with ni-bij-def
        have ni-bij n = int(n div 2) by auto
    moreover
    have int(n div 2) }\geq0\mathrm{ by auto
    ultimately show ni-bij n\geq0 by auto
qed
lemma im-neg-mod: ni-bij n<0\Longrightarrown mod 2 = 1
proof -
    assume output-neg: ni-bij n<0
    have }n\operatorname{mod}2\not=
    proof (rule contrapos-nn [of ni-bij n \geq 0])
    from mod-pos and output-neg show }\neg(0\leqni-bij n) by arit
    next
        from mod-pos show n mod 2 = 0 mi-bij n\geq0.
    qed
    with mod-cases show n mod 2 = 1 by auto
qed
lemma im-notneg-mod: ni-bij n \geq0\Longrightarrown mod 2 = 0
proof -
    assume output-notneg: ni-bij n \geq0
    have }n\operatorname{mod}2\not=
    proof (rule contrapos-nn [of ni-bij n<0])
        from mod-neg and output-notneg show }\neg(\mathrm{ ni-bij }n<0)\mathrm{ by arith
    next
        from mod-neg show n mod 2 = 1 \Longrightarrow ni-bij n < 0.
    qed
    with mod-cases show n mod 2 = 0 by auto
qed
lemma mod-rule-needed: (k::nat) mod 2 = 0 ^k>0\Longrightarrow(k-1) mod 2 = 1
proof -
    assume (k::nat) mod 2 = 0 ^k>0
    thus (k-1) mod 2 = 1 by arith
qed
```

With these facts we can show ni-bij is a bijetion. The proof is really just a matter of (un)folding definitions, and some computatons.

```
theorem ni-bij-bij: bij ni-bij
proof (unfold bij-def, rule conjI)
    show INJ: inj ni-bij
    proof (rule injI)
    fix \(x\) ::nat and \(y:: n a t\)
    assume eq-ass: ni-bij \(x=n i\)-bij \(y\)
    show \(x=y\)
    proof cases
        assume ni-bij \(x<0\)
        with \(i m-n e g-\bmod\) have \(x\)-mod: \(x \bmod 2=1\).
        hence \(x\)-eq: ni-bij \(x=-\operatorname{int}(x \operatorname{div} 2)-1\) by \(\operatorname{simp}\)
        moreover
        with eq-ass have ni-bij \(y<0\) by auto
        with im-neg-mod have \(y\)-mod: \(y \bmod 2=1\).
        hence ni-bij \(y=-\operatorname{int}(y \operatorname{div} 2)-1\) by \(\operatorname{simp}\)
        ultimately
        have \(x \operatorname{div} 2=y \operatorname{div} 2\) using eq-ass by auto
        moreover
        from \(x\)-mod and \(y\)-mod have \(x \bmod 2=y \bmod 2\) by auto
        ultimately show \(x=y\) by arith
    next
        assume \(\neg(\) ni-bij \(x<0)\)
        hence im-x-notneg: ni-bij \(x \geq 0\) by auto
        with eq-ass have ni-bij \(y \geq 0\) by auto
        with im-notneg-mod have \(y\)-mod: \((y \bmod 2)=0\).
        from im-notneg-mod and im-x-notneg have \(x\)-mod: \(x \bmod 2=0\).
        hence ni-bij-x-ex: ni-bij \(x=\operatorname{int}(x\) div 2) by auto
        from \(y\)-mod
            have \(n i-b i j y=\operatorname{int}(y \operatorname{div}\) 2) by auto
        with eq-ass and ni-bij-x-ex
            have \(x \operatorname{div} 2=y \operatorname{div} 2\) by auto
        moreover
        from \(x\)-mod and \(y\)-mod have \(x \bmod 2=y \bmod 2\) by auto
        ultimately show \(x=y\) by arith
    qed
qed
```

next
show SURJ: surj ni-bij
proof (unfold Fun.surj-def, rule allI)
fix y :: int
show $\exists x$. $y=n i$-bij x
proof (cases)
assume y-pos: $y \geq 0$
let $? x=2 * n a t(y)$

```
        have \(? x \bmod 2=0\) by auto
        hence int \((2 *\) nat \(y\) div 2) \(=n i-b i j ? x\) by auto
        with \(y\)-pos have \(y=n i\)-bij ? \(x\) by arith
        thus \(\exists x . y=n i\)-bij \(x\) by (rule exI[of - ? \(x]\) )
    next
        assume \(\neg(0 \leq y)\)
        hence ne-y: \(y<0\) by auto
        let \(? x=(2 * \operatorname{nat}(-y))-1\)
        have pos-x: ? \(x>0\)
        proof -
            from ne-y have \(-y>0\) by auto
            hence \(\operatorname{nat}(-y)>0\) by auto
            hence \(2 * \operatorname{nat}(-y)>1\) by auto
            thus ? \(x>0\) by auto
    qed
    have \((2 * \operatorname{nat}(-y)) \bmod (2:: n a t)=(0:: n a t)\) by auto
    with mod-rule-needed and pos-x
        have \((2 * \operatorname{nat}(-y)-1) \bmod (2:: n a t)=(1:: n a t)\) by auto
    hence \(y=n i\)-bij ? \(x\) by auto
    thus \(\exists x . y=n i\)-bij \(x\) by (rule exI)
    qed
qed
qed
```

The following lemma turned out easier to prove than to find.

```
lemma bij-f-o-inf-f: bij \(f \Longrightarrow f \circ i n v f=i d\)
proof -
    assume bij-f: bij \(f\)
    with bij-imp-bij-inv have bij-inv-f: bij (invf) by auto
    with bij-def have inj (invf) by auto
    hence \(i i f-i f-i d: \operatorname{inv}(i n v f) \circ \operatorname{inv} f=i d\) by auto
    from bij-f and inv-inv-eq have \(\operatorname{inv}(\operatorname{inv} f)=f\) by auto
    with \(i i f-i f-i d\) show \(f \circ i n v f=i d\) by auto
qed
```

The following theorem is a key theorem is showing that the group we are interested in is cofinitary. It states that when you conjugate a function with a bijection the fixed points get mapped over.
theorem conj-fix-pt: $\bigwedge f::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) . \bigwedge g::\left(' b \Rightarrow{ }^{\prime} b\right)$. (bij $\left.f\right)$

$$
\Longrightarrow\left((i n v f)^{‘}(\text { Fix } g)\right)=F i x((i n v f) \circ g \circ f)
$$

proof -
fix $f::^{\prime} a \Rightarrow{ }^{\prime} b$
assume bij-f: bij f
with bij-def have inj-f: inj f by auto
fix $g::^{\prime} b \Rightarrow{ }^{\prime} b$
show $((\operatorname{inv} f) \cdot($ Fix $g))=\operatorname{Fix}((\operatorname{inv} f) \circ g \circ f)$
thm set-eq-subset[of $(\operatorname{inv} f)^{\prime}\left(\right.$ Fix $\left.\left._{\mathrm{g}}\right) \operatorname{Fix}((\operatorname{inv} f) \circ g \circ f)\right]$
proof
show $(\operatorname{inv} f) ‘($ Fix $g) \subseteq$ Fix $((i n v f) \circ g \circ f)$

```
        proof
            fix }
            assume x\in(invf)'(Fix g)
    with image-def have \existsy\in Fix g. x = (invf) y by auto
    from this obtain y where y-prop: y f Fix g}\wedgex=(inv f) y by aut
    hence }x=(\operatorname{invf})y.
    hence fx=(f\circinv f) y by auto
    with bij-f and bij-f-o-inf-f[of f] have f-x-y:fx=y by auto
    from y-prop have }y\in\mathrm{ Fix }g\mathrm{ ..
    with Fix-def[of g] have g y = y by auto
    with f-x-y have g}(fx)=fx\mathrm{ by auto
    hence (invf)(g(fx))=\operatorname{inv}f(fx) by auto
    with inv-f-f and inj-f have (inv f) (g(fx)) =x by auto
    hence ((invf)\circg\circf)x=x by auto
    with Fix-def[of inv f\circg\circf]
            show }x\inFix((invf)\circg\circf) by aut
        qed
    next
        show Fix (inv f\circg\circf)\subseteq(invf)'(Fix g)
        proof
            fix }
            assume }x\in\operatorname{Fix (inv f\circg\circf)
            with Fix-def[of inv f\circg\circf]
            have x-fix:(inv f\circg\circf)x=x by auto
            hence (inv f) (g(f(x)))=x by auto
            hence }\existsy.(invf) y=x by aut
            from this obtain y where x-inf-f-y:x=(inv f) y by auto
            with x-fix have (inv f\circg\circf)((invf) y)=(invf) y by auto
            hence (f\circinvf\circg\circf\circinvf)(y)=(f\circinvf)(y) by auto
            with o-assoc
            have}((f\circinvf)\circg\circ(f\circinvf))y=(f\circinvf)y\mathrm{ by auto
            with bij-f and bij-f-o-inf-f[of f]
                have g}y=y\mathrm{ by auto
            with Fix-def[of g] have }y\in\mathrm{ Fix }g\mathrm{ by auto
            with x-inf-f-y show }x\in(invf)'(Fix g) by aut
        qed
    qed
qed
```


8 Bijections on \mathbb{N}

In this section we define the subset Ex2 of S-inf that is the conjugate of CofGroups.Ex1 bij ni-bij, and show its basic properties.
First we prove a simple lemma that again was easier to prove than to find.

```
lemma comp-bij: \(\left(b i j\left(g::^{\prime} a \Rightarrow{ }^{\prime} b\right) \wedge b i j\left(h::{ }^{\prime} b \Rightarrow^{\prime} c\right)\right) \Longrightarrow b i j(h \circ g)\)
proof -
    assume bij \(g \wedge\) bij \(h\)
    hence \(b i j g\) and bij \(h\) by auto
```

```
    with bij-is-inj and bij-is-surj
    have inj-g: inj \(g\) and surj-g: surj \(g\) and inj-h: inj \(h\)
        and surj-h: surj \(h\) by auto
    show bij \((h \circ g)\)
    proof (rule bijI)
    show inj \((h \circ g)\)
    proof (rule injI)
        fix \(x y\)
        assume \((h \circ g) x=(h \circ g) y\)
        hence \(h(g(x))=h(g(y))\) by auto
        with \(i n j-h\) and \(i n j\)-eq \([o f ~ h]\) have \(g(x)=g(y)\) by auto
        with \(i n j-g\) and inj-eq[of \(g]\) show \(x=y\) by auto
    qed
    from surj-h and surj-g and comp-surj show surj \((h \circ g)\) by auto
    qed
qed
```

CONJ is the function that will conjugate CofGroups.Ex1 to Ex2.
definition $C O N J::($ int \Rightarrow int $) \Rightarrow(n a t \Rightarrow n a t)$
where
$C O N J f=($ inv ni-bij $) \circ f \circ n i-b i j$
declare CONJ-def [simp] - automated tools can use the definition
We quickly check that this function is of the right type, and then show three of its properties that are very useful in showing Ex2 is a group.

```
lemma type-CONJ: \(f \in E x 1 \Longrightarrow(\) inv ni-bij \() \circ f \circ n i\)-bij \(\in S\)-inf
proof -
    assume \(f\)-Ex1: \(f \in E x 1\)
    with all-bij have bij \(f\) by auto
    with ni-bij-bij and comp-bij
    have bij-f-nibij: bij ( \(f \circ\) ni-bij) by auto
    with ni-bij-bij and bij-imp-bij-inv have bij (inv ni-bij) by auto
    with bij-f-nibij and comp-bij[of \(f \circ\) ni-bij inv ni-bij]
        and o-assoc[of inv ni-bij f ni-bij]
        have bij ((inv ni-bij) \(\circ f \circ n i-b i j)\) by auto
    with \(S\)-inf-def show \(((\) inv ni-bij \() \circ f \circ n i\)-bij \() \in S\)-inf by auto
qed
```

lemma inv-CONJ:
assumes bij-f: bij f
shows inv $(\operatorname{CONJ} f)=\operatorname{CONJ}($ inv f) $($ is ?left $=$? right $)$
proof -
have st1: ?left $=i n v((i n v n i-b i j) \circ f \circ n i-b i j)$
using CONJ-def by auto
from ni-bij-bij and bij-imp-bij-inv
have inv-ni-bij-bij: bij (inv ni-bij) by auto
with bij-f and comp-bij have bij (inv ni-bij $\circ f$) by auto with o-inv-distrib[of inv ni-bij of ni-bij] and ni-bij-bij have inv $(($ inv ni-bij $) \circ f \circ$ ni-bij $)=$ (inv ni-bij) $\circ($ inv $((i n v n i-b i j) \circ f))$ by auto
with st1 have st2: ?left $=$
(inv ni-bij) $\circ($ inv $((i n v ~ n i-b i j) \circ f))$ by auto
from inv-ni-bij-bij and $\langle b i j f\rangle$ and o-inv-distrib
have h1: inv (inv ni-bij $\circ f)=\operatorname{inv} f \circ \operatorname{inv}(\operatorname{inv}(n i-b i j))$ by auto
from ni-bij-bij and inv-inv-eq[of ni-bij]
have inv (inv ni-bij) $=n i$-bij by auto
with st2 and $h 1$ have ?left $=($ inv ni-bij $\circ(\operatorname{inv} f \circ($ ni-bij $)))$ by auto
with o-assoc have ?left $=i n v n i-b i j \circ i n v f \circ n i-b i j$ by auto
with CONJ-def[of inv f] show ?thesis by auto
qed
lemma comp-CONJ:
CONJ $(f \circ g)=($ CONJ $f) \circ($ CONJ $g)($ is ?left $=$?right $)$
proof -
from ni-bij-bij have surj ni-bij using bij-def by auto
with surj-iff have ni-bij $\circ($ inv ni-bij) $=i d$ by auto
moreover
have ?left $=($ inv ni-bij $) \circ(f \circ g) \circ$ ni-bij by simp
hence ?left $=($ inv ni-bij $) \circ((f \circ i d) \circ g) \circ n i-b i j$ by simp
ultimately
have ?left =
$($ inv ni-bij $) \circ((f \circ(n i-b i j \circ($ inv $n i-b i j))) \circ g) \circ n i-b i j$
by auto

- a simple computation using only associativity
- completes the proof
thus ?left $=$? right by (auto simp add: o-assoc)
qed
lemma $i d-C O N J: C O N J i d=i d$
proof (unfold CONJ-def)
from ni-bij-bij have inj ni-bij using bij-def by auto
hence inv ni-bij $\circ n i$-bij $=i d$ by auto
thus (inv ni-bij $\circ i d) \circ n i-b i j=i d$ by auto
qed
We now define the group we are interested in, and show the basic facts that together will show this is a cofinitary group.

```
definition Ex2 :: (nat \(\Rightarrow\) nat) set
where
\(E x 2=C O N J^{`} E x 1\)
theorem mem-Ex2-rule: \(f \in\) Ex2 \(=(\exists g .(g \in E x 1 \wedge f=C O N J g))\)
proof
    assume \(f \in E x 2\)
    hence \(f \in C O N J^{\prime} E x 1\) using Ex2-def by auto
```

```
    from this obtain g}\mathrm{ where g}\in\mathrm{ Ex1 ^f=CONJ g by blast
    thus }\existsg.(g\inEx1\wedgef=CONJ g) by aut
next
    assume \existsg. (g\inEx1 ^f=CONJ g)
    with Ex2-def show f}\in\mathrm{ Ex2 by auto
qed
theorem Ex2-cofinitary:
    assumes f-Ex2: f\inEx2
    and f-nid: f}\not=i
    shows Fix f={}
proof -
    from f-Ex2 and mem-Ex2-rule
    obtain g}\mathrm{ where g-Ex1:g EEx1 and f-cg:f=CONJ g by auto
    with id-CONJ and f-nid have g}\not=id\mathrm{ by auto
    with g-Ex1 and no-fixed-pt[of g] have fg-empty: Fix g={} by auto
    from conj-fix-pt[of ni-bij g] and ni-bij-bij
    have (inv ni-bij)'(Fix g)= Fix(CONJ g) by auto
    with fg-empty have {}= Fix (CONJ g) by auto
    with f-cg show Fix f}={}\mathrm{ by auto
qed
lemma id-Ex2:id \inEx2
proof -
    from Ex1-Normal-form-part2[of 0] have id \in Ex1 by auto
    with id-CONJ and Ex2-def and mem-Ex2-rule show ?thesis by auto
qed
```

```
lemma inv-Ex2: f\inEx2 \Longrightarrow(invf)\inEx2
```

lemma inv-Ex2: f\inEx2 \Longrightarrow(invf)\inEx2
proof -
proof -
assume f \in Ex2
assume f \in Ex2
with mem-Ex2-rule obtain g}\mathrm{ where g}\inEx1 and f=CONJ g by aut
with mem-Ex2-rule obtain g}\mathrm{ where g}\inEx1 and f=CONJ g by aut
with closed-inv have inv g}\inEx1 by aut
with closed-inv have inv g}\inEx1 by aut
from }\langlef=CONJ g\rangle have if-iCg:inv f=inv(CONJ g) by aut
from }\langlef=CONJ g\rangle have if-iCg:inv f=inv(CONJ g) by aut
from all-bij and <g}\inEx1> have bij g by aut
from all-bij and <g}\inEx1> have bij g by aut
with if-iCg and inv-CONJ have inv f=CONJ (inv g) by auto
with if-iCg and inv-CONJ have inv f=CONJ (inv g) by auto
from <g E Ex1> and closed-inv have inv g \in Ex1 by auto
from <g E Ex1> and closed-inv have inv g \in Ex1 by auto
with <inv f=CONJ (inv g)` and mem-Ex2-rule show inv f\inEx2 by auto with <inv f=CONJ (inv g)` and mem-Ex2-rule show inv f\inEx2 by auto
qed
qed
lemma comp-Ex2:
lemma comp-Ex2:
assumes f-Ex2: f}\inE\mathrm{ Ex2 and
assumes f-Ex2: f}\inE\mathrm{ Ex2 and
g-Ex2: g \in Ex2
g-Ex2: g \in Ex2
shows f\circg\inEx2
shows f\circg\inEx2
proof -
proof -
from f-Ex2 obtain f-1
from f-Ex2 obtain f-1
where f-1-Ex1: f-1 \inEx1 and f=CONJ f-1

```
            where f-1-Ex1: f-1 \inEx1 and f=CONJ f-1
```

using mem-Ex2-rule by auto
moreover
from g-Ex2 obtain g - 1
where g-1-Ex1: $g-1 \in E x 1$ and $g=C O N J ~ g-1$
using mem-Ex2-rule by auto
ultimately
have $f \circ g=($ CONJ $f-1) \circ(C O N J g-1)$ by auto
hence $f \circ g=C O N J(f-1 \circ g-1)$ using comp-CONJ by auto
moreover
have $f-1 \circ g-1 \in E x 1$ using closed-comp and $f-1-E x 1$ and $g-1-E x 1$ by auto
ultimately
show $f \circ g \in$ Ex2 using mem-Ex2-rule by auto
qed

9 The Conclusion

With all that we have shown we have already clearly shown Ex2 to be a cofinitary group. The formalization also shows this, we just have to refer to the correct theorems proved above.

```
interpretation CofinitaryGroup Ex2
proof
    show Ex2 \(\subseteq S\)-inf
    proof
        fix \(f\)
        assume \(f \in E x 2\)
        with mem-Ex2-rule obtain \(g\) where \(g \in E x 1\) and \(f=C O N J g\) by auto
        with type-CONJ show \(f \in S\)-inf by auto
    qed
next
    from \(i d-E x 2\) show \(i d \in E x 2\).
next
    fix \(f g\)
    assume \(f \in \operatorname{Ex2} \wedge g \in E x 2\)
    with comp-Ex2 show \(f \circ g \in\) Ex2 by auto
next
    fix \(f\)
    assume \(f \in E x 2\)
    with inv-Ex2 show inv \(f \in E x 2\) by auto
next
    fix \(f\)
    assume \(f \in E x 2 \wedge f \neq i d\)
    with Ex2-cofinitary have Fix \(f=\{ \}\) by auto
    thus finite (Fixf) using finite-def by auto
qed
end
```


References

[1] S. A. Adeleke. Embeddings of infinite permutation groups in sharp, highly transitive, and homogeneous groups. Proc. Edinburgh Math. Soc. (2), 31(2):169-178, 1988.
[2] J. Brendle, O. Spinas, and Y. Zhang. Uniformity of the meager ideal and maximal cofinitary groups. J. Algebra, 232(1):209-225, 2000.
[3] P. J. Cameron. Cofinitary permutation groups. Bull. London Math. Soc., 28(2):113-140, 1996.
[4] S. Gao and Y. Zhang. Definable sets of generators in maximal cofinitary groups. Adv. Math., 217(2):814-832, 2008.
[5] M. Hrušák, J. Steprans, and Y. Zhang. Cofinitary groups, almost disjoint and dominating families. J. Symbolic Logic, 66(3):1259-1276, 2001.
[6] B. Kastermans. Isomorphism types of maximal cofinitary groups. to appear in the Bulletin of Symbolic Logic.
[7] B. Kastermans. Questions on cofinitary groups. in preparation.
[8] B. Kastermans. The complexity of maximal cofinitary groups. Proceeding American Mathematical Society, 137(1):307-316, 2009.
[9] B. Kastermans and Y. Zhang. Cardinal invariants related to permutation groups. Ann. Pure Appl. Logic, 143:139-146i, 2006.
[10] S. Koppelberg. Groups of permutations with few fixed points. Algebra Universalis, 17(1):50-64, 1983.
[11] L. C. Paulson and K. Grạbczewski. Mechanizing set theory. Cardinal arithmetic and the axiom of choice. J. Automat. Reason., 17(3):291323, 1996.
[12] J. K. Truss. Embeddings of infinite permutation groups. In Proceedings of groups - St. Andrews 1985, volume 121 of London Math. Soc. Lecture Note Ser., pages 335-351, Cambridge, 1986. Cambridge Univ. Press.
[13] J. K. Truss. Joint embeddings of infinite permutation groups. In $A d$ vances in algebra and model theory (Essen, 1994; Dresden, 1995), volume 9 of Algebra Logic Appl., pages 121-134. Gordon and Breach, Amsterdam, 1997.
[14] Y. Zhang. Constructing a maximal cofinitary group. Lobachevskii J. Math., 12:73-81 (electronic), 2003.

