
An Example of a Cofinitary Group in Isabelle/HOL

Bart Kastermans

August 3, 2009

Abstract

We formalize the usual proof that the group generated by the func-
tion k 7→ k + 1 on the integers gives rise to a cofinitary group.

Contents

1 Introduction 1

2 The Main Notions 3

3 The Function upOne 4

4 The Set of Functions and Normal Forms 5

5 All Elements Cofinitary Bijections. 7

6 Closed under Composition and Inverse 8

7 Move onto the Natural Numbers 11

8 Bijections on N 15

9 The Conclusion 19

theory CofGroups
imports Main
begin

1 Introduction

Cofinitary groups have received a lot of attention in Set Theory. I will start
by giving some references, that together give a nice view of the area. See
also Kastermans [7] for my view of where the study of these groups (other
than formalization) is headed. Starting work was done by Adeleke [1], Truss

1

[12] and [13], and Koppelberg [10]. Cameron [3] is a very nice survey. There
is also work on cardinal invariants related to these groups and other almost
disjoint families, see e.g. Brendle, Spinas, and Zhang [2], Hrušák, Steprans,
and Zhang [5], and Kastermans and Zhang [9]. Then there is also work on
constructions and descriptive complexity of these groups, see e.g. Zhang
[14], Gao and Zhang [4], and Kastermans [6] and [8].
In this note we work through formalizing a basic example of a cofinitary
group. We want to achieve two things by working through this example.
First how to formalize some proofs from basic set-theoretic algebra, and
secondly, to do some first steps in the study of formalization of this area of
set theory. This is related to the work of Paulson andGr

‘
abczewski [11] on

formalizing set theory, our preference however is towards using Isar resulting
in a development more readable for “normal” mathematicians.
A cofinitary group is a subgroup G of the symmetric group on N (in Isabelle
nat) such that all non-identity elements g ∈ G have finitely many fixed
points. A simple example of a cofinitary group is obtained by considering the
group G′ a subgroup of the symmetric group on Z (in Isabelle int generated
by the function upOne : Z → Z defined by k 7→ k + 1. No element in this
group other than the identity has a fixed point. Conjugating this group by
any bijection Z→ N gives a cofinitary group.
We will develop a workable definition of a cofinitary group (Section 2 and
show that the group as described in the previous paragraph is indeed cofini-
tary (this takes the whole paper, but is all pulled together in Section 9.
Note: formalizing the previous paragraph is all that is completed in this
note.
Since this note is also written to be read by the proverbial “normal” mathe-
matician we will sometimes remark on notations as used in Isabelle as they
related to common notation. We do expect this proverbial mathematician
to be somewhat flexible though. He or she will need to be flexible in reading,
this is just like reading any other article; part of reading is reconstructing.

We end this introduction with a quick overview of the paper. In Section 2
we define the notion of cofinitary group. In Section 3 we define the function
upOne and give some of its basic properties. In Section 4 we define the set
Ex1 which is the underlying set of the group generated by upOne, there we
also derive a normal form theorem for the elements of this set. In Section 5
we show all elements in Ex1 are cofinitary bijections (cofinitary here is used
in the general meaning of having finitely many fixed points). In Section 6
we show this set is closed under composition and inverse, in effect showing
that it is a “cofinitary group” (cofinitary group here is in quotes, since we
only define it for sets of permutations on the natural numbers). In Section
7 we define a bijection ni-bij from the natural numbers to the integers and
show some of its general properties. We also show there the general theorem

2

that conjugating a permutation by a bijection does the expected thing to
the set of fixed points. In Section 8 we define the functino CONJ that
is conjugation by ni-bij, show that is acts well with respect to the group
operations, use it to define Ex2 which is the underlying set of the cofinitary
group we are construction, and show the basic properties of Ex2. Finally in
Section 9 we quickly show that all the work in the section before it combines
to show that Ex2 is a cofinitary group.

2 The Main Notions

First we define the two main notions.
We write S-inf for the symmetric group on the natural numbers (we do not
define this as a group, only as the set of bijections).

definition S-inf :: (nat ⇒ nat) set
where
S-inf = {f ::(nat ⇒ nat). bij f }

Note here that bijf is the predicate that f is a bijection. This is common
notation in Isabelle, a predicate applied to an object. Related to thsi injf
means f is injective, and surj f means f is surjective.
The same notation is used for functionn application. Next we define a
function Fix, applying it to an object is also written by juxtaposition.

Given any function f we define Fix f to be the set of fixed points for this
function.

definition Fix :: (′a ⇒ ′a) ⇒ (′a set)
where
Fix f = { n . f (n) = n }

We then define a locale CofinitaryGroup that represents the notion of a
cofinitary group. An interpretation is given by giving a set of functions
nat→ nat and showing that it satisfies the identities the locale assumes. A
locale is a way to collect together some information that can then later be
used in a flexible way (we will not make a lot of use of that here).

locale CofinitaryGroup =
fixes

dom :: (nat ⇒ nat) set
assumes

type-dom : dom ⊆ S-inf and
id-com : id ∈ dom and
mult-closed : f ∈ dom ∧ g ∈ dom =⇒ f ◦ g ∈ dom and
inv-closed : f ∈ dom =⇒ inv f ∈ dom and
cofinitary : f ∈ dom ∧ f 6= id =⇒ finite (Fix f)

3

3 The Function upOne

Here we define the function, upOne, translation up by 1 and proof some of
its basic properties.

definition upOne :: int ⇒ int
where
upOne n = n + 1

declare upOne-def [simp] — automated tools can use the definition

First we show that this function is a bijection. This is done in the usual two
parts; we show it is injective by showing from the assumption that outputs
on two numbers are equal that these two numbers are equal. Then we show
it is surjective by finding the number that maps to a given number.

lemma inj-upOne: inj upOne
by (rule Fun.injI , simp)

lemma surj-upOne: surj upOne
proof (unfold Fun.surj-def , rule)

fix k ::int
show ∃m. k = upOne m

by (rule exI [of λl . k = upOne l k − 1], simp)
qed

theorem bij-upOne: bij upOne
by (unfold bij-def , rule conjI [OF inj-upOne surj-upOne])

Now we show that the set of fixed points of upOne is empty. We show this
in two steps, first we show that no number is a fixed point, and then derive
from this that the set of fixed points is empty.

lemma no-fix-upOne: upOne n 6= n
proof (rule notI)

assume upOne n = n
with upOne-def have n+1 = n by simp
thus False by auto

qed

theorem Fix upOne = {}
proof −

from Fix-def [of upOne]
have Fix upOne = {n . upOne n = n} by auto
with no-fix-upOne have Fix upOne = {n . False} by auto
with Set .empty-def show Fix upOne = {} by auto

qed

Finally we derive the equation for the inverse of upOne. The rule we use
references Hilbert− Choice since the inv operator, the operator that gives
an inverse of a function, is defined using Hilbert’s choice operator.;

4

lemma inv-upOne-eq : (inv upOne) (n::int) = n − 1
proof −

fix n :: int
have ((inv upOne) ◦ upOne) (n − 1) = (inv upOne) n by simp
with inj-upOne and Hilbert-Choice.inv-o-cancel

show (inv upOne) n = n − 1 by auto
qed

We can also show this quickly using Hilbert Choice.inv f eq properly instan-
tiated : upOne (n − 1) = n =⇒ inv upOne n = n − 1.

lemma (inv upOne) n = n − 1
by (rule Hilbert-Choice.inv-f-eq [of upOne n − 1 n, OF inj-upOne], simp)

4 The Set of Functions and Normal Forms

We define the set Ex1 of all powers of upOne and study some of its proper-
ties, note that this is the group generated by upOne (in Section 6 we prove
it closed under composition and inverse). In Section 5 we show that all
its elements are cofinitary and bijections (bijections with finitely many fixed
points). Note that this is not a cofinitary group, since our definition requires
the group to be a subset of S-inf

inductive-set Ex1 :: (int ⇒ int) set where
base-func: upOne ∈ Ex1 |
comp-func: f ∈ Ex1 =⇒ (upOne ◦ f) ∈ Ex1 |
comp-inv : f ∈ Ex1 =⇒ ((inv upOne) ◦ f) ∈ Ex1

We start by showing a normal form for elements in this set.

lemma Ex1-Normal-form-part1 : f ∈ Ex1 =⇒ ∃ k . ∀ n. f (n) = n + k
proof (rule Ex1 .induct [of f], blast)

— blast takes care of the first goal which is formal noise
assume f ∈ Ex1
have ∀n. upOne n = n + 1 by simp
with HOL.exI show ∃ k . ∀n. upOne n = n + k by auto

next
fix fa:: int => int
assume fa-k : ∃ k . ∀n. fa n = n + k
thus ∃ k . ∀n. (upOne ◦ fa) n = n + k by auto

next
fix fa :: int ⇒ int
assume fa-k : ∃ k . ∀n. fa n = n + k
from inv-upOne-eq have ∀n. (inv upOne) n = n − 1 by auto
with fa-k show ∃ k . ∀n. (inv upOne ◦ fa) n = n + k by auto

qed

Now we’ll show the other direction. Then we apply rule int-induct which
allows us to do the induction by first showing it true for k = 1, then showing

5

that if true for k = i it is also true for k = i+ 1 and finally showing that if
true for k = i then it is also true for k = i− 1.
All proofs are fairly straightforward and use extensionality for functions. In
the base case we are just dealing with upOne. In the other cases we define
the function ?h which satisfies the induction hypothesis. Then f is obtained
from this by adding or subtracting one pointwise.
In this proof we use some pattern matching to save on writing. In the state-
ment of the theorem, we match the theorem against ?Pk thereby defining
the predicate ?P .

lemma Ex1-Normal-form-part2 :
(∀ f . ((∀n. f n = n + k) −→ f ∈ Ex1)) (is ?P k)

proof (rule int-induct [of ?P 1])
show ∀ f . (∀n. f n = n + 1) −→ f ∈ Ex1
proof

fix f :: int ⇒ int
show (∀n. f n = n + 1) −→ f ∈ Ex1
proof

assume ∀n. f n = n + 1
hence ∀n. f n = upOne n by auto
with expand-fun-eq [of f upOne,THEN sym]

have f = upOne by auto
with Ex1 .base-func show f ∈ Ex1 by auto

qed
qed

next
fix i ::int
assume 1 ≤ i
assume induct-hyp: ∀ f . (∀n. f n = n + i) −→ f ∈ Ex1
show ∀ f . (∀n. f n = n + (i + 1)) −→ f ∈ Ex1
proof

fix f :: int ⇒ int
show (∀n. f n = n + (i + 1)) −→ f ∈ Ex1
proof

assume f-eq : ∀n. f n = n + (i + 1)
let ?h = λn. n + i
from induct-hyp have h-Ex1 : ?h ∈ Ex1 by auto
from f-eq have ∀n. f n = upOne (?h n) by (unfold upOne-def ,auto)
hence ∀n. f n = (upOne ◦ ?h) n by auto
with expand-fun-eq [THEN sym, of f upOne ◦ ?h]

have f = upOne ◦ ?h by auto
with h-Ex1 and Ex1 .comp-func[of ?h] show f ∈ Ex1 by auto

qed
qed

next
fix i ::int
assume i ≤ 1
assume induct-hyp: ∀ f . (∀n. f n = n + i) −→ f ∈ Ex1

6

show ∀ f . (∀n. f n = n + (i − 1)) −→ f ∈ Ex1
proof

fix f :: int ⇒ int
show (∀n. f n = n + (i − 1)) −→ f ∈ Ex1
proof

assume f-eq : ∀n. f n = n + (i − 1)
let ?h = λn. n + i
from induct-hyp have h-Ex1 : ?h ∈ Ex1 by auto
from inv-upOne-eq and f-eq

have ∀n. f n = (inv upOne) (?h n) by auto
hence ∀n. f n = (inv upOne ◦ ?h) n by auto
with expand-fun-eq [THEN sym, of f inv upOne ◦ ?h]

have f = inv upOne ◦ ?h by auto
with h-Ex1 and Ex1 .comp-inv [of ?h] show f ∈ Ex1 by auto

qed
qed

qed

Combining the two directions we get the normal form theorem.

theorem Ex1-Normal-form: (f ∈ Ex1) = (∃ k . ∀n. f (n) = n + k)
proof

assume f ∈ Ex1
with Ex1-Normal-form-part1 [of f]

show (∃ k . ∀n. f (n) = n + k) by auto
next

assume ∃ k . ∀n. f (n) = n + k
with Ex1-Normal-form-part2

show f ∈ Ex1 by auto
qed

5 All Elements Cofinitary Bijections.

We now show all elements in CofGroups.Ex1 are bijections, Theorem all-bij,
and have no fixed points, Theorem no-fixed-pt.

theorem all-bij : f ∈ Ex1 =⇒ bij f
proof (unfold bij-def)

assume f ∈ Ex1
with Ex1-Normal-form

obtain k where f-eq :∀n. f n = n + k by auto

show inj f ∧ surj f
proof (rule conjI)

show INJ : inj f
proof (rule injI)

fix n m
assume f n = f m
with f-eq have n + k = m + k by auto
thus n = m by auto

7

qed
next

show SURJ : surj f
proof (unfold Fun.surj-def , rule allI)

fix n
from f-eq have n = f (n − k) by auto
thus ∃m. n = f m by (rule exI)

qed
qed

qed

theorem no-fixed-pt :
assumes f-Ex1 : f ∈ Ex1
and f-not-id : f 6= id
shows Fix f = {}

proof −
— we start by proving an easy general fact

have f-eq-then-id : (∀n. f (n) = n) =⇒ f = id
proof −

assume f-prop : ∀n. f (n) = n
have (f x = id x) = (f x = x) by simp
hence (∀ x . (f x = id x)) = (∀ x . (f x = x)) by simp
with expand-fun-eq [THEN sym, of f id] and f-prop show f = id by auto

qed
from f-Ex1 and Ex1-Normal-form have ∃ k . ∀n. f (n) = n + k by auto
then obtain k where k-prop: ∀n. f (n) = n + k ..
hence k = 0 =⇒ ∀n. f (n) = n by auto
with f-eq-then-id and f-not-id have k 6= 0 by auto
with k-prop have ∀n. f (n) 6= n by auto
moreover
from Fix-def [of f] have Fix f = {n . f (n) = n} by auto
ultimately have Fix f = {n. False} by auto
with Set .empty-def show Fix f = {} by auto

qed

6 Closed under Composition and Inverse

We start by showing that this set is closed under composition. These facts
can later be conjugated to easily obtain the corresponding results for the
group on the natural numbers.

theorem closed-comp: f ∈ Ex1 ∧ g ∈ Ex1 =⇒ f ◦ g ∈ Ex1
proof (rule Ex1 .induct [of f], blast)

assume f ∈ Ex1 ∧ g ∈ Ex1
with Ex1 .comp-func[of g] show upOne ◦ g ∈ Ex1 by auto

next
fix fa
assume fa ◦ g ∈ Ex1

8

with Ex1 .comp-func [of fa ◦ g]
and Fun.o-assoc [of upOne fa g]
show upOne ◦ fa ◦ g ∈ Ex1 by auto

next
fix fa
assume fa ◦ g ∈ Ex1
with Ex1 .comp-inv [of fa ◦ g]

and Fun.o-assoc [of inv upOne fa g]
show (inv upOne) ◦ fa ◦ g ∈ Ex1 by auto

qed

Now we show the set is closed under inverses. This is done by an induction
on the definition of CofGroups.Ex1 only using the normal form theorem and
rewriting of expressions.

theorem closed-inv : f ∈ Ex1 =⇒ inv f ∈ Ex1
proof (rule Ex1 .induct [of f], blast)

assume f ∈ Ex1
show inv upOne ∈ Ex1 (is ?right ∈ Ex1)
proof −

let ?left = inv upOne ◦ (inv upOne ◦ upOne)
{

from Ex1 .comp-inv and Ex1 .base-func have ?left ∈ Ex1 by auto
}
moreover
{

from bij-upOne and bij-is-inj have inj upOne by auto
hence inv upOne ◦ upOne = id by auto
hence ?left = ?right by auto

}
ultimately
show ?thesis by auto

qed
next

fix f
assume f-Ex1 : f ∈ Ex1
from f-Ex1 and Ex1-Normal-form
obtain k where f-eq : ∀n. f n = n + k by auto

show inv (upOne ◦ f) ∈ Ex1
proof −

let ?ic = inv (upOne ◦ f)
let ?ci = inv f ◦ inv upOne
{

— first we get an expression for inv f ◦ inv upOne
{

from all-bij and f-Ex1 have bij f by auto
with bij-is-inj have inj-f : inj f by auto
have ∀n. inv f n = n − k
proof

9

fix n
from f-eq have f (n − k) = n by auto
with inv-f-eq [of f n−k n] and inj-f
show inv f n = n−k by auto

qed
with inv-upOne-eq
have ∀n. ?ci n = n − k − 1 by auto
hence ∀n. ?ci n = n + (−1 − k) by arith

}
moreover
— then we check that this implies inv f ◦ inv upOne is
— a member of CofGroups.Ex1
{

from Ex1-Normal-form-part2 [of −1 − k]
have (∀ f . ((∀n. f n = n + (−1 − k)) −→ f ∈ Ex1)) by auto

}
ultimately
have ?ci ∈ Ex1 by auto

}
moreover
{

from f-Ex1 all-bij have bij f by auto
with bij-upOne and o-inv-distrib[THEN sym]
have ?ci = ?ic by auto

}
ultimately show ?thesis by auto

qed
next

fix f
assume f-Ex1 : f ∈ Ex1
with Ex1-Normal-form

obtain k where f-eq : ∀n. f n = n + k by auto

show inv (inv upOne ◦ f) ∈ Ex1
proof −

let ?ic = inv (inv upOne ◦ f)
let ?c = inv f ◦ upOne
{

from all-bij and f-Ex1 have bij f by auto
with bij-is-inj have inj-f : inj f by auto
have ∀n. inv f n = n − k
proof

fix n
from f-eq have f (n − k) = n by auto
with inv-f-eq [of f n−k n] and inj-f
show inv f n = n−k by auto

qed
with upOne-def
have ∀n. (inv f ◦ upOne) n = n − k + 1 by auto

10

hence ∀n. (inv f ◦ upOne) n = n + (1 − k) by arith
moreover
from Ex1-Normal-form-part2 [of 1 − k]
have (∀ f . ((∀n. f n = n + (1 − k)) −→ f ∈ Ex1)) by auto
ultimately
have ?c ∈ Ex1 by auto

}
moreover
{

from f-Ex1 all-bij and bij-is-inj have bij f by auto
moreover
from bij-upOne and bij-imp-bij-inv have bij (inv upOne) by auto
moreover
note o-inv-distrib[THEN sym]
ultimately
have inv f ◦ inv (inv upOne) = inv (inv upOne ◦ f) by auto
moreover
from bij-upOne and inv-inv-eq

have inv (inv upOne) = upOne by auto
ultimately
have ?c = ?ic by auto

}
ultimately
show ?thesis by auto

qed
qed

7 Move onto the Natural Numbers

We define a bijection from the natural numbers to the integers. This will be
used to coerce the functions above to be on the natural numbers.

definition ni-bij :: nat ⇒ int
where
ni-bij n = (if ((n mod (2)) = 0)

then int (n div 2)
else −int (n div 2) − 1)

declare ni-bij-def [simp] — automated tools can use the definition

Under this bijection the even natural numbers map to the positive integers,
e.g. ni-bij 0 is 0, ni-bij 4 is 2. The odd natural numbers map to the negative
integers, e.g. ni-bij 1 is −1, and ni-bij 3 is −3.

We prove a couple of simple facts on modular arithmetic that we’ll use to
prove properties of ni-bij.

lemma mod-cases: (n::nat) mod 2 = 1 ∨ n mod 2 = 0 by arith

lemma mod-neg : n mod 2 = 1 =⇒ ni-bij n < 0

11

proof −
assume n mod 2 = 1
with ni-bij-def

have eq : ni-bij n = −int (n div 2) − 1 by auto
moreover
have −int (n div 2) − 1 < 0 by arith
ultimately
show ni-bij n < 0 by auto

qed

lemma mod-pos: n mod 2 = 0 =⇒ ni-bij n ≥ 0
proof −

assume n mod 2 = 0
with ni-bij-def

have ni-bij n = int(n div 2) by auto
moreover
have int(n div 2) ≥ 0 by auto
ultimately show ni-bij n ≥ 0 by auto

qed

lemma im-neg-mod : ni-bij n < 0 =⇒ n mod 2 = 1
proof −

assume output-neg : ni-bij n < 0
have n mod 2 6= 0
proof (rule contrapos-nn [of ni-bij n ≥ 0])

from mod-pos and output-neg show ¬(0 ≤ ni-bij n) by arith
next

from mod-pos show n mod 2 = 0 =⇒ ni-bij n ≥ 0 .
qed
with mod-cases show n mod 2 = 1 by auto

qed

lemma im-notneg-mod : ni-bij n ≥ 0 =⇒ n mod 2 = 0
proof −

assume output-notneg : ni-bij n ≥ 0
have n mod 2 6= 1
proof (rule contrapos-nn [of ni-bij n < 0])

from mod-neg and output-notneg show ¬(ni-bij n < 0) by arith
next

from mod-neg show n mod 2 = 1 =⇒ ni-bij n < 0 .
qed
with mod-cases show n mod 2 = 0 by auto

qed

lemma mod-rule-needed : (k ::nat) mod 2 = 0 ∧ k > 0 =⇒ (k − 1) mod 2 = 1
proof −

assume (k ::nat) mod 2 = 0 ∧ k > 0
thus (k − 1) mod 2 = 1 by arith

qed

12

With these facts we can show ni-bij is a bijetion. The proof is really just a
matter of (un)folding definitions, and some computatons.

theorem ni-bij-bij : bij ni-bij
proof (unfold bij-def , rule conjI)

show INJ : inj ni-bij
proof (rule injI)

fix x ::nat and y ::nat
assume eq-ass: ni-bij x = ni-bij y
show x = y
proof cases

assume ni-bij x < 0
with im-neg-mod have x-mod : x mod 2 = 1 .
hence x-eq : ni-bij x = −int(x div 2) − 1 by simp
moreover
with eq-ass have ni-bij y < 0 by auto
with im-neg-mod have y-mod : y mod 2 = 1 .
hence ni-bij y = −int(y div 2) − 1 by simp
ultimately
have x div 2 = y div 2 using eq-ass by auto
moreover
from x-mod and y-mod have x mod 2 = y mod 2 by auto
ultimately show x = y by arith

next
assume ¬(ni-bij x < 0)
hence im-x-notneg : ni-bij x ≥ 0 by auto
with eq-ass have ni-bij y ≥ 0 by auto
with im-notneg-mod have y-mod : (y mod 2) = 0 .
from im-notneg-mod and im-x-notneg have x-mod : x mod 2 = 0 .
hence ni-bij-x-ex : ni-bij x = int(x div 2) by auto
from y-mod

have ni-bij y = int(y div 2) by auto
with eq-ass and ni-bij-x-ex

have x div 2 = y div 2 by auto
moreover
from x-mod and y-mod have x mod 2 = y mod 2 by auto
ultimately show x = y by arith

qed
qed

next

show SURJ : surj ni-bij
proof (unfold Fun.surj-def , rule allI)

fix y ::int
show ∃ x . y = ni-bij x
proof (cases)

assume y-pos: y ≥ 0
let ?x = 2∗nat(y)

13

have ?x mod 2 = 0 by auto
hence int (2 ∗ nat y div 2) = ni-bij ?x by auto
with y-pos have y = ni-bij ?x by arith
thus ∃ x . y = ni-bij x by (rule exI [of - ?x])

next
assume ¬(0 ≤ y)
hence ne-y : y < 0 by auto
let ?x = (2∗nat(−y))− 1
have pos-x : ?x > 0
proof −

from ne-y have −y > 0 by auto
hence nat(−y) > 0 by auto
hence 2∗nat(−y) > 1 by auto
thus ?x > 0 by auto

qed
have (2∗ nat(−y)) mod (2 ::nat) = (0 ::nat) by auto
with mod-rule-needed and pos-x

have (2∗nat(−y) − 1) mod (2 ::nat) = (1 ::nat) by auto
hence y = ni-bij ?x by auto
thus ∃ x . y = ni-bij x by (rule exI)

qed
qed

qed

The following lemma turned out easier to prove than to find.

lemma bij-f-o-inf-f : bij f =⇒ f ◦ inv f = id
proof −

assume bij-f : bij f
with bij-imp-bij-inv have bij-inv-f : bij (inv f) by auto
with bij-def have inj (inv f) by auto
hence iif-if-id : inv (inv f) ◦ inv f = id by auto
from bij-f and inv-inv-eq have inv (inv f) = f by auto
with iif-if-id show f ◦ inv f = id by auto

qed

The following theorem is a key theorem is showing that the group we are
interested in is cofinitary. It states that when you conjugate a function with
a bijection the fixed points get mapped over.

theorem conj-fix-pt :
∧

f ::(′a ⇒ ′b).
∧

g ::(′b ⇒ ′b). (bij f)
=⇒ ((inv f)‘ (Fix g)) = Fix ((inv f) ◦ g ◦ f)

proof −
fix f :: ′a ⇒ ′b
assume bij-f : bij f
with bij-def have inj-f : inj f by auto
fix g :: ′b⇒ ′b
show ((inv f)‘ (Fix g)) = Fix ((inv f) ◦ g ◦ f)
thm set-eq-subset [of (inv f)‘ (Fix g) Fix ((inv f) ◦ g ◦ f)]
proof

show (inv f)‘ (Fix g) ⊆ Fix ((inv f) ◦ g ◦ f)

14

proof
fix x
assume x ∈ (inv f)‘ (Fix g)
with image-def have ∃ y ∈ Fix g . x = (inv f) y by auto
from this obtain y where y-prop: y ∈ Fix g ∧ x = (inv f) y by auto
hence x = (inv f) y ..
hence f x = (f ◦ inv f) y by auto
with bij-f and bij-f-o-inf-f [of f] have f-x-y : f x = y by auto
from y-prop have y ∈ Fix g ..
with Fix-def [of g] have g y = y by auto
with f-x-y have g (f x) = f x by auto
hence (inv f) (g (f x)) = inv f (f x) by auto
with inv-f-f and inj-f have (inv f) (g (f x)) = x by auto
hence ((inv f) ◦ g ◦ f) x = x by auto
with Fix-def [of inv f ◦ g ◦ f]

show x ∈ Fix ((inv f) ◦ g ◦ f) by auto
qed

next
show Fix (inv f ◦ g ◦ f) ⊆ (inv f)‘ (Fix g)
proof

fix x
assume x ∈ Fix (inv f ◦ g ◦ f)
with Fix-def [of inv f ◦ g ◦ f]

have x-fix : (inv f ◦ g ◦ f) x = x by auto
hence (inv f) (g(f (x))) = x by auto
hence ∃ y . (inv f) y = x by auto
from this obtain y where x-inf-f-y : x = (inv f) y by auto
with x-fix have (inv f ◦ g ◦ f)((inv f) y) = (inv f) y by auto
hence (f ◦ inv f ◦ g ◦ f ◦ inv f) (y) = (f ◦ inv f)(y) by auto
with o-assoc

have ((f ◦ inv f) ◦ g ◦ (f ◦ inv f)) y = (f ◦ inv f)y by auto
with bij-f and bij-f-o-inf-f [of f]

have g y = y by auto
with Fix-def [of g] have y ∈ Fix g by auto
with x-inf-f-y show x ∈ (inv f)‘ (Fix g) by auto

qed
qed

qed

8 Bijections on N

In this section we define the subset Ex2 of S-inf that is the conjugate of
CofGroups.Ex1 bij ni-bij, and show its basic properties.
First we prove a simple lemma that again was easier to prove than to find.

lemma comp-bij : (bij (g :: ′a ⇒ ′b) ∧ bij (h:: ′b ⇒ ′c)) =⇒ bij (h ◦ g)
proof −

assume bij g ∧ bij h
hence bij g and bij h by auto

15

with bij-is-inj and bij-is-surj
have inj-g : inj g and surj-g : surj g and inj-h: inj h

and surj-h: surj h by auto
show bij (h ◦ g)
proof (rule bijI)

show inj (h ◦ g)
proof (rule injI)

fix x y
assume (h ◦ g) x = (h ◦ g) y
hence h(g(x)) = h(g(y)) by auto
with inj-h and inj-eq [of h] have g(x) = g(y) by auto
with inj-g and inj-eq [of g] show x = y by auto

qed

from surj-h and surj-g and comp-surj show surj (h ◦ g) by auto
qed

qed

CONJ is the function that will conjugate CofGroups.Ex1 to Ex2.

definition CONJ :: (int ⇒ int) ⇒ (nat ⇒ nat)
where
CONJ f = (inv ni-bij) ◦ f ◦ ni-bij

declare CONJ-def [simp] — automated tools can use the definition

We quickly check that this function is of the right type, and then show three
of its properties that are very useful in showing Ex2 is a group.

lemma type-CONJ : f ∈ Ex1 =⇒ (inv ni-bij) ◦ f ◦ ni-bij ∈ S-inf
proof −

assume f-Ex1 : f ∈ Ex1
with all-bij have bij f by auto
with ni-bij-bij and comp-bij

have bij-f-nibij : bij (f ◦ ni-bij) by auto
with ni-bij-bij and bij-imp-bij-inv have bij (inv ni-bij) by auto
with bij-f-nibij and comp-bij [of f ◦ ni-bij inv ni-bij]

and o-assoc[of inv ni-bij f ni-bij]
have bij ((inv ni-bij) ◦ f ◦ ni-bij) by auto

with S-inf-def show ((inv ni-bij) ◦ f ◦ ni-bij) ∈ S-inf by auto
qed

lemma inv-CONJ :
assumes bij-f : bij f
shows inv (CONJ f) = CONJ (inv f) (is ?left = ?right)

proof −
have st1 : ?left = inv ((inv ni-bij) ◦ f ◦ ni-bij)

using CONJ-def by auto
from ni-bij-bij and bij-imp-bij-inv

have inv-ni-bij-bij : bij (inv ni-bij) by auto

16

with bij-f and comp-bij have bij (inv ni-bij ◦ f) by auto
with o-inv-distrib[of inv ni-bij ◦ f ni-bij] and ni-bij-bij
have inv ((inv ni-bij) ◦ f ◦ ni-bij) =

(inv ni-bij) ◦ (inv ((inv ni-bij) ◦ f)) by auto
with st1 have st2 : ?left =

(inv ni-bij) ◦ (inv ((inv ni-bij) ◦ f)) by auto
from inv-ni-bij-bij and 〈bij f 〉 and o-inv-distrib

have h1 : inv (inv ni-bij ◦ f) = inv f ◦ inv (inv (ni-bij)) by auto
from ni-bij-bij and inv-inv-eq [of ni-bij]

have inv (inv ni-bij) = ni-bij by auto
with st2 and h1 have ?left = (inv ni-bij ◦ (inv f ◦ (ni-bij))) by auto
with o-assoc have ?left = inv ni-bij ◦ inv f ◦ ni-bij by auto
with CONJ-def [of inv f] show ?thesis by auto

qed

lemma comp-CONJ :
CONJ (f ◦ g) = (CONJ f) ◦ (CONJ g) (is ?left = ?right)

proof −
from ni-bij-bij have surj ni-bij using bij-def by auto
with surj-iff have ni-bij ◦ (inv ni-bij) = id by auto
moreover
have ?left = (inv ni-bij) ◦ (f ◦ g) ◦ ni-bij by simp
hence ?left = (inv ni-bij) ◦ ((f ◦ id) ◦ g) ◦ ni-bij by simp
ultimately
have ?left =

(inv ni-bij) ◦ ((f ◦ (ni-bij ◦ (inv ni-bij))) ◦ g) ◦ ni-bij
by auto

— a simple computation using only associativity
— completes the proof

thus ?left = ?right by (auto simp add : o-assoc)
qed

lemma id-CONJ : CONJ id = id
proof (unfold CONJ-def)

from ni-bij-bij have inj ni-bij using bij-def by auto
hence inv ni-bij ◦ ni-bij = id by auto
thus (inv ni-bij ◦ id) ◦ ni-bij = id by auto

qed

We now define the group we are interested in, and show the basic facts that
together will show this is a cofinitary group.

definition Ex2 :: (nat ⇒ nat) set
where
Ex2 = CONJ‘Ex1

theorem mem-Ex2-rule: f ∈ Ex2 = (∃ g . (g ∈ Ex1 ∧ f = CONJ g))
proof

assume f ∈ Ex2
hence f ∈ CONJ‘Ex1 using Ex2-def by auto

17

from this obtain g where g ∈ Ex1 ∧ f = CONJ g by blast
thus ∃ g . (g ∈ Ex1 ∧ f = CONJ g) by auto

next
assume ∃ g . (g ∈ Ex1 ∧ f = CONJ g)
with Ex2-def show f ∈ Ex2 by auto

qed

theorem Ex2-cofinitary :
assumes f-Ex2 : f ∈ Ex2
and f-nid : f 6= id
shows Fix f = {}

proof −
from f-Ex2 and mem-Ex2-rule
obtain g where g-Ex1 : g ∈ Ex1 and f-cg : f = CONJ g by auto
with id-CONJ and f-nid have g 6= id by auto
with g-Ex1 and no-fixed-pt [of g] have fg-empty : Fix g = {} by auto
from conj-fix-pt [of ni-bij g] and ni-bij-bij
have (inv ni-bij)‘ (Fix g) = Fix (CONJ g) by auto
with fg-empty have {} = Fix (CONJ g) by auto
with f-cg show Fix f = {} by auto

qed

lemma id-Ex2 : id ∈ Ex2
proof −

from Ex1-Normal-form-part2 [of 0] have id ∈ Ex1 by auto
with id-CONJ and Ex2-def and mem-Ex2-rule show ?thesis by auto

qed

lemma inv-Ex2 : f ∈ Ex2 =⇒ (inv f) ∈ Ex2
proof −

assume f ∈ Ex2
with mem-Ex2-rule obtain g where g ∈ Ex1 and f = CONJ g by auto
with closed-inv have inv g ∈ Ex1 by auto
from 〈f = CONJ g〉 have if-iCg : inv f = inv (CONJ g) by auto
from all-bij and 〈g ∈ Ex1 〉 have bij g by auto
with if-iCg and inv-CONJ have inv f = CONJ (inv g) by auto
from 〈g ∈ Ex1 〉 and closed-inv have inv g ∈ Ex1 by auto
with 〈inv f = CONJ (inv g)〉 and mem-Ex2-rule show inv f ∈ Ex2 by auto

qed

lemma comp-Ex2 :
assumes f-Ex2 : f ∈ Ex2 and
g-Ex2 : g ∈ Ex2
shows f ◦ g ∈ Ex2

proof −
from f-Ex2 obtain f-1

where f-1-Ex1 : f-1 ∈ Ex1 and f = CONJ f-1

18

using mem-Ex2-rule by auto
moreover
from g-Ex2 obtain g-1

where g-1-Ex1 : g-1 ∈ Ex1 and g = CONJ g-1
using mem-Ex2-rule by auto

ultimately
have f ◦ g = (CONJ f-1) ◦ (CONJ g-1) by auto
hence f ◦ g = CONJ (f-1 ◦ g-1) using comp-CONJ by auto
moreover
have f-1 ◦ g-1 ∈ Ex1 using closed-comp and f-1-Ex1 and g-1-Ex1 by auto
ultimately
show f ◦ g ∈ Ex2 using mem-Ex2-rule by auto

qed

9 The Conclusion

With all that we have shown we have already clearly shown Ex2 to be a
cofinitary group. The formalization also shows this, we just have to refer to
the correct theorems proved above.

interpretation CofinitaryGroup Ex2
proof

show Ex2 ⊆ S-inf
proof

fix f
assume f ∈ Ex2
with mem-Ex2-rule obtain g where g ∈ Ex1 and f = CONJ g by auto
with type-CONJ show f ∈ S-inf by auto

qed
next

from id-Ex2 show id ∈ Ex2 .
next

fix f g
assume f ∈ Ex2 ∧ g ∈ Ex2
with comp-Ex2 show f ◦ g ∈ Ex2 by auto

next
fix f
assume f ∈ Ex2
with inv-Ex2 show inv f ∈ Ex2 by auto

next
fix f
assume f ∈ Ex2 ∧ f 6= id
with Ex2-cofinitary have Fix f = {} by auto
thus finite (Fix f) using finite-def by auto

qed

end

19

References

[1] S. A. Adeleke. Embeddings of infinite permutation groups in sharp,
highly transitive, and homogeneous groups. Proc. Edinburgh Math.
Soc. (2), 31(2):169–178, 1988.

[2] J. Brendle, O. Spinas, and Y. Zhang. Uniformity of the meager ideal
and maximal cofinitary groups. J. Algebra, 232(1):209–225, 2000.

[3] P. J. Cameron. Cofinitary permutation groups. Bull. London Math.
Soc., 28(2):113–140, 1996.

[4] S. Gao and Y. Zhang. Definable sets of generators in maximal cofinitary
groups. Adv. Math., 217(2):814–832, 2008.

[5] M. Hrušák, J. Steprans, and Y. Zhang. Cofinitary groups, almost
disjoint and dominating families. J. Symbolic Logic, 66(3):1259–1276,
2001.

[6] B. Kastermans. Isomorphism types of maximal cofinitary groups. to
appear in the Bulletin of Symbolic Logic.

[7] B. Kastermans. Questions on cofinitary groups. in preparation.

[8] B. Kastermans. The complexity of maximal cofinitary groups. Proceed-
ing American Mathematical Society, 137(1):307–316, 2009.

[9] B. Kastermans and Y. Zhang. Cardinal invariants related to permuta-
tion groups. Ann. Pure Appl. Logic, 143:139–146i, 2006.

[10] S. Koppelberg. Groups of permutations with few fixed points. Algebra
Universalis, 17(1):50–64, 1983.

[11] L. C. Paulson and K. Gr
‘
abczewski. Mechanizing set theory. Cardinal

arithmetic and the axiom of choice. J. Automat. Reason., 17(3):291–
323, 1996.

[12] J. K. Truss. Embeddings of infinite permutation groups. In Proceedings
of groups—St. Andrews 1985, volume 121 of London Math. Soc. Lecture
Note Ser., pages 335–351, Cambridge, 1986. Cambridge Univ. Press.

[13] J. K. Truss. Joint embeddings of infinite permutation groups. In Ad-
vances in algebra and model theory (Essen, 1994; Dresden, 1995), vol-
ume 9 of Algebra Logic Appl., pages 121–134. Gordon and Breach, Am-
sterdam, 1997.

[14] Y. Zhang. Constructing a maximal cofinitary group. Lobachevskii J.
Math., 12:73–81 (electronic), 2003.

20

	Introduction
	The Main Notions
	The Function upOne
	The Set of Functions and Normal Forms
	All Elements Cofinitary Bijections.
	Closed under Composition and Inverse
	Move onto the Natural Numbers
	Bijections on N
	The Conclusion

